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Abstract

Pedestrian spatial behaviour is defined as the pedestrians’ reaction to their im-
mediate surroundings. Analysis of changes in this behaviour due to alternation
in the environmental settings is an important facet of architectural and urban
design. To measure the changes, human body dynamics, such as head posi-
tion, gaze direction, movement direction, speed of movement, and trajectory
can be employed. In this research the main purpose is to support architects
and urban designers to better assess the impact of the spatial environment ion
the pedestrian’s behaviour in planned urban spaces. To this end, an analysis
system is proposed to learn the patterns of behaviour observed in a simulated
and real-world architectural space.

The simulated environment is generated using the proposed pedestrian and
urban models. The models provide important behavioural characteristics in a
multi-agent-based simulation system. They support complex spatial interac-
tions between agents and their environment, including agent-to-agent inter-
actions, different spatial desires, and interpersonal distance. The simulated
environment can be automatically generated using scanned line drawings of
two-dimensional street maps or public spaces. In the simulation model, a vari-
ety of scenarios can be defined and modified by altering different parameters.
Using the example of Wheeler Place in Newcastle (Australia), the experiments
demonstrate how pedestrian behavioural characteristics can depend on selected
abstract features in urban spaces. The characteristics are used in the analysis
system to distinguish between different patterns of spatial behaviour.

The analysis system consists of a proposed technique for sequential data
classification where each data object may have different lengths. The new
technique, called GDTW-P-SVMs, is a maximum margin method for the con-
struction of classifiers with variable-length input series. It employs potential
support vector machines (P-SVMs) and dynamic time warping (DTW) to waive
the fixed-length restriction of feature vectors in standard support vector ma-
chines (SVMs). The new technique elaborates on the P-SVM kernel function,
by utilising DTW to provide an elastic distance measure for the kernel func-
tion. Benchmarks for classification are performed with several real-world data
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sets from the UCR Time Series Classification/Clustering page, GeoLife trajec-
tory data set, and UCI Machine Learning Repository. The data sets include
data with both variable and fixed-length input series. The results show that
the new method performs significantly better than the benchmarked standard
classification methods.

To learn patterns of spatial behaviour the proposed classification technique
is employed with simulated and real-world characteristics. The characteristics
are collected from Wheeler Place using the proposed simulation software and
pedestrian tracking system. GDTW-P-SVMs classify patterns of behaviour
using the whole sequence of data series as a single input to increase the clas-
sification performance. As a result, they can provide the highest classification
accuracy using the simulated and real-world data sets, when compared with
the other existing methods.

Keywords: Spatial Behaviour Analysis, Trajectory Data Analysis, Sup-
port Vector Machines, Dynamic Time Warping
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1.2.1 Behavioural Characteristics . . . . . . . . . . . . . . . . 5

1.2.2 Spatial Behaviour Analysis . . . . . . . . . . . . . . . . 6
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1.3.2 Spatial Behaviour Analysis . . . . . . . . . . . . . . . . 8
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In recent years, the automatic analysis of pedestrian behaviour has been
attracting an increasing amount of attention from researchers because of its
important applicative aspects and intrinsic scientific interest. At the same
time, progress on sensors, sensor networking, computer vision, audio analysis
and speech recognition are making available the building blocks for automatic
behavioural analysis. This research has included the analysis of spatial be-
haviour, using human body dynamics while moving in urban space, to monitor
the impact of visually attractive objects. The proposed analysis system is able
to measure changes in pedestrians’ spatial features and distinguish between
several behavioural classes.
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To analyse the behaviour, a selected set of body dynamics was simulated.
The use of simulation software was proposed in order to avoid the difficulties
associated with collecting noisy data from real-world environments, to collect as
much data as we require to classify different categories of behaviour, to be able
to change the environmental configuration as we require, and to ensure that
our hypothesis of using human body dynamics to analyse pedestrian behaviour
works with the simulated data.

The proposed simulation approach consists of two separated models; an
urban model and a pedestrian model. Previously, the simulation of pedestrian
body dynamics was based on one of two approaches: i) analytical approaches
and ii) cellular automata. Analytical approaches use a mathematical formula
to model the average behaviour of group of people. As human reactions are
characterised by a significant degree of randomness, analytical models fail to
simulate this randomness with mathematical functions. On the other hand, in
cellular automata (CA) approaches the accuracy of the model depends on cell
size used in CA. This implicitly restricts movement of the simulated agents to
the centre of each cell.

The proposed simulation is a multi-agent system with the characteristic
dynamics of a crowd of moving pedestrians in a section of an abstract urban
2-dimensional environment. In the simulation, each agent is able to have dif-
ferent behaviours with a large degree of freedom. A point-based movement
approach is employed so the movements are not limited to the cell size. The
first version of the simulation models only basic behavioural characteristics
such as gaze vector, speed vector, and trajectories. In the second version more
advanced characteristics that simulate spatial behaviour more accurately are
included in both the urban and pedestrian models. This includes crowd at-
traction, agent need vector, agent to agent interaction, interpersonal distance,
attractive object category and virtual attractive objects with dynamic level of
attraction. The simulated characteristics are employed in the analysis system
to differentiate between several classes of spatial behaviour.

The analysis system should be able to classify not only simulated noise
free data but also real-world noisy data. To evaluate the proposed analysis
system a pedestrian detection and tracking system was developed for extract-
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ing pedestrians’ trajectories from Wheeler Place, Newcastle, Australia. The
system includes three main parts: i) background detection, which is capable of
upgrading the background image dynamically, ii) pedestrian detection, which
uses a set of shape-based features in a classification technique to distinguish
between pedestrian and non-pedestrian foreground objects, and iii) pedestrian
tracking, which recognises the detected pedestrians in a stack of video frames
using motion-based and depth-based features. The detection is carried out
using a learning system that employs Support Vector Machines.

Support vector machines (SVMs) have become a popular approach to pat-
tern classification, as they can deliver state-of-the-art performance on a wide
variety of real-world classification problems. SVM is a maximum margin
kernel-based classification technique. SVMs are a learning system that uses
a hypothesis space of linear functions in high dimensional feature space. The
kernel used in SVMs maps the data to the higher dimensional space. The
kernel includes a distance measure that finds the similarities/dissimilarities
between data objects. The most common kernel function that has been used
in SVMs is the Radial Basis Function (Gaussian Function) with the Euclidean
Distance (ED).

The kernel function used in the standard SVMs classification technique is
required to satisfy Mercer’s conditions, otherwise the existence of Reproducing
Kernel Hilbert Space (RKHS) is not guaranteed and it is no longer clear what
it is that is being optimised. ED can be only applied on data vectors with
fixed length. The use of an elastic distance measure called Dynamic Time
Warping (DTW) is a tempting solution for the analysis of input series with
different lengths. However, it will be shown that the constructed kernel that
used DTW is not always positive semi-definite, which violates the Mercer’s
theorem. To overcome this problem, a classification method is proposed. It
is a new classification technique for sequential data analysis, where each data
object is characterised by a series of numerical values that may have different
lengths for different data objects.

Employing the new classification technique makes it possible to avoid seg-
menting data entries into fixed-length parts. The fixed-length data segments
may fail to contain the information needed to properly describe samples in the
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input space. Therefore, in classifying trajectory data the accuracy of the classi-
fier using fixed-length feature vectors is very dependent on the segmentation or
feature selection algorithm. Instead of using some fixed-length segments (fea-
tures) to describe the trajectory data, a new system that considers the entire
trajectory for each user as a single input to the system is proposed. To achieve
this, the proposed classification technique is employed to classify trajectories
obtained from both real-world and simulated pedestrians.

The analysis method can classify behavioural characteristics extracted from
the real-world or generated in the proposed simulation software. Although the
classification accuracy using real-world data was lower than using simulated
data, GDTW-P-SVMs significantly improved the error rate compared to other
existing methods. The classification accuracy of GDTW-P-SVMs was com-
pared with the other classification techniques, and GDTW-P-SVMs showed
the highest accuracy using real-world and simulated data sets.

1.1 Motivation

Analysing how pedestrians’ dynamic behaviour in space is influenced by envi-
ronmental settings is an important component in the design of transportation
facilities, pedestrian walkways, traffic intersections, markets, and other public
spaces. The analysis is also an essential component required by a variety of
applications. The areas of applications include automated surveillance, indoor
and outdoor architectural design, advertisement and marketing, and emergency
management. Due to a large number of potential applications, pedestrian be-
haviour analysis has become an active area in sociology research. However,
analysing the spatial behaviour of pedestrians using an automated intelligent
system has rarely been investigated. This is either because extracting such
an amount of information from observers was a time consuming process, or an
accurate classifier able to work with variable-length data objects was not avail-
able. Existing analysis approaches mainly suffer from applying a constraint to
obtain fixed-length data vectors [94].

This thesis presents an intelligent method to model the impacts of envi-
ronmental visual attractors on pedestrian spatial behaviour. The method is
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applied to generated as well as real-world data sets. The generated data sets
are obtained by utilising the proposed simulation software. The simulation
software is capable of modelling dynamic and static properties of spatial be-
haviours affected by personal and social interactions. The intelligent method is
a maximum margin classifier with the ability to handle data objects with dif-
ferent lengths. The classifier makes it possible to use trajectories with different
lengths in the input space. Using the whole sequence instead of some fixed-
length segments of the trajectory data improves the accuracy of behaviour
classification.

There are still many open questions about how the aesthetics of the environ-
ment interact with human pedestrians or users of space, and how it compares
to other, more functional factors, such as path widths, the availability of open
space, and the presence of obstacles or attractive objects. While behavioural
data extraction and information retrieval from the data is the main focus of
this thesis, data collection for specific applications could be a complex and
time consuming task and it is out of the scope of this thesis.

1.2 Application Areas

The proposed approaches to analyse spatial behaviour are presented in two
separate parts in this thesis. The first part is associated with behavioural
data collection and the second part is related to the analysis of data that are
extracted using the methods described in the first part. The application areas
of this research are also split into two parts using the same criteria.

1.2.1 Behavioural Characteristics

Theile [178] has discussed the importance of virtual architecture in design
and using the computer world as a suitable medium by which designers can
convey the human side of design. Virtual pedestrians play an important role in
analysing the effectiveness and improving the design of an architectural space.
By using a simulated environment we can avoid the difficulties of extracting
complex pedestrian behavioural characteristics. In addition, the analysis of



1.2. Application Areas 6

simulated spatial behaviour provides an assessment of proposed architectural
designs and helps to design the environment more effectively [178]. Simulating
the behaviour of pedestrians in “normal” situations is also important in urban
planning [97], land use [150], and traffic operations [27].

While simulated characteristics have long been used in the above mentioned
applications, the analysis of extracted behavioural features using pedestrian
detection and tracking systems has become popular in the last decade [59].
Pedestrian detection and tracking can be seen as a key enabling technology
within the framework of a variety of intelligent systems. This technology is key
to knowing who is where in a scene and what their actions have been. Accurate
pedestrian detection and tracking is a prerequisite for the viability of a variety
of computer vision applications, such as multimedia storage [95] automated
security systems [82], public service applications [154], and multidisciplinary
paradigms, for example ambient intelligence [191].

1.2.2 Spatial Behaviour Analysis

In the study of spatial behavior we are interested in finding the rules for spatial
choice which, when applied to any unique distribution of spatial opportunities,
are capable of generating spatial behavior patterns similar to those observed.
Several studies have concentrated on the analysis of the relationship between
the configurational characteristics of urban spaces and pedestrian spatial be-
haviour [189]. A constant pattern of movement, characterising urban spaces
with the presence of pedestrians, would improve our architectural understand-
ing of the space. This aids in analysing the design of an urban space from
architectural and sociological point of view [93]. In addition, the literature on
human cognition suggests that configurational aspects of built environments
have significant consequences on pedestrians’ spatial behaviour. Golledge and
Stimson [64] have emphasised that the path or network structure used in every-
day spatial behaviour is a critical feature of the image of a spatial environment.
Others suggest that the spatial layout of the built environment influences the
accuracy of cognitive representations of real-world spatial information [143].

Behaviour normality analysis is an active research topic in increasing the
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security of public places such as museums, parks, and cinemas [176]. The
importance of fear of crime on affecting the use of urban spaces has been given
special attention by many authors [117, 32]. In particular, authors in [117]
showed that there is a correlation between the spatial features of layout and
crime distribution patterns.

Crowds occur frequently, usually without serious problems. Occasionally
venue inadequacies and deficient crowd management result in injuries and fa-
talities. Management of emergency response for both man-made and natural
incidents has become a key research field. Effective crowd management re-
quires accurate prediction of the impact of such incidents on the crowd as well
as the environment. By analysing the behaviour of a group of pedestrians
in simulated emergency situations, the responsible agencies would be able to
evaluate different evacuation and damage control policies beforehand. This
will allow the execution of the most effective crowd evacuation scheme during
the actual emergency scenario [173].

The purpose of advertisement in public spaces is to attract the attention
of people as they pass by. The behaviour of pedestrians in a public space can
provide useful information regarding the attention paid to an attractive object,
i.e. its visiting frequency. By analysing visiting frequencies for all attractive
objects in different configurational scenarios, the best configuration with the
highest number of attracted pedestrians can be obtained. This approach is
applicable in advertisement and marketing where highest number of visitors is
always desirable.

1.3 Challenges

1.3.1 Behavioural Characteristics Extraction

Selection of the behavioural characteristics that can reveal the desired differ-
ences between normal and attracted trajectories is the first challenge that has
been encountered. Two main criteria should be considered when selecting the
characteristics: i) the differences between normal and abnormal behaviour de-
scribed by the characteristics should be detectable using an automatic learning
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system and ii) the characteristics should be extractable and measurable. For
instance it is assumed that the physical characteristics of an environmental
setting influence our attitudes and actions more than a biological or cultural
trait [92]. Therefore the biological or cultural characteristics do not show a
detectable difference between normal and abnormal spatial behaviours. In ad-
dition, socio-cultural variables are harder to measure and less obvious across
behavioural settings.

To generate a set of behavioural characteristics a simulation software that
models pedestrians’ behaviour in urban spaces is proposed. Pedestrian flows
are characterised by a significant degree of randomness, so that one could
consider each individual’s trip is unique. Simulating and analysing such a
big data set of behaviours involves many ingredients, such as navigation and
orientation, evaluation and decision making, variation of personal behaviour,
and crowd attraction. Therefore, analytical approaches that use an average
mathematical function to model such randomness would be too restricted as
they apply the same function to all simulated individuals. On the other hand,
pedestrians’ movements are not restricted to cell sizes and therefore cellular
automata cannot describe pedestrian movements for our purpose.

Extraction of the selected behavioural characteristics that describe pedes-
trians’ spatial behaviour in the real-world is a challenging problem. This in-
cludes the detection of non-rigid body, different colours and shapes for different
pedestrians, background detection and pedestrian occlusion.

1.3.2 Spatial Behaviour Analysis

The system for the automatic analysis of behavioral information classifies and
collects statistics of human activities. The behavioural data may contain strong
noise due to the collection method or environmental settings. The system
therefore needs to distinguish small changes in noisy data. It also needs to be
trained on normal behaviour using a small amount of data since data collection
for this purpose is a time consuming and expensive process.

As individuals move at different speeds, the data inputs of pedestrian be-
haviour analysis in Wheeler Place (or within the model of Wheeler Place) will
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have different lengths. The analysis method should therefore be able to handle
data objects with different lengths. Since we need to compare each journey
with others, each data entry should contain the information for the entire pe-
riod of travel. So the analysis method is required to accept each journey as one
single input to reveal the differences/similarities between casual and attracted
behaviours.

1.4 Aims and Objectives of This Thesis

This research investigated approaches and methods for analysing pedestrian
spatial behaviour in urban spaces. Throughout the research, consideration was
given to the purpose of the analysis, for example improving the architectural
design to support effective use of public spaces and for modelling the impacts
of different configurations on pedestrians’ behaviour. The work is based on the
following aims:

1. Simulating pedestrian spatial behaviour : To demonstrate how pedestri-
ans’ behavioural characteristics can depend on selected abstract features
in urban space, a simulation software was developed. The simulation
includes urban models, pedestrian models, and a multi-agent-based sim-
ulation method. The simulation is used to support architects and ur-
ban designers to better assess the impact of planned urban spaces and
streetscapes on pedestrian spatial behaviour. It is also used to show that
the changes in spatial behaviour due to the influence of attractive objects
in urban spaces are detectable.

2. Collecting pedestrian trajectories: To show the impacts of attractive ob-
jects on pedestrian spatial behaviour in urban spaces, a pedestrian detec-
tion and tracking system was developed. The system includes methods to
recognise pedestrians from non-pedestrian objects, and a tracking scheme
to match pedestrians in a stack of frames. It is also employed to evaluate
the simulated trajectories.

3. Developing a trajectory-based classification method : To analyse the col-
lected and generated behavioural characteristics, an intelligent classifica-
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Figure 1.1: Relationship between the research aims.
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tion technique is proposed. The technique needs to be capable of han-
dling the extracted and generated trajectory data sets. The technique
also needs to be robust and to accept input series with different lengths.

4. Analysing the behavioural characteristics: The main aim of this research
is to develop a system to analyse pedestrian spatial behaviours in ur-
ban spaces. This aim is addressed iteratively by employing existing and
proposed classification techniques on the simulated and collected data to
distinguish between defined classes of behaviours.

Thus, this research aimed to propose, develop and discuss approaches for
analysing the impacts of attractors in urban spaces on pedestrian spatial be-
haviour. In the course of this work data were collected on the actual behaviours
that people demonstrated in an urban space. These data were analysed only
to support further understanding of the approaches and methods. The rela-
tionship between the aims of this research is shown graphically in Figure 1.1.
The main research contributions regarding to each aim will be discussed in
Chapter 7.

1.5 Publications

The following publications have been written within the timescale of this PhD
research:

Journals

• A. Jalalian, S. K. Chalup, and M. J. Ostwald, Architectural evaluation of
simulated pedestrian spatial behaviour, Journal of Architectural Science
Review, Vol 54, no. 2, pp 132-140, 2011

• A. Jalalian, and S. K. Chalup, GDTW-P-SVMs: Variable-length time se-
ries analysis using support vector machines, 2011. (under review, revised
version submitted)

• A. Jalalian, S. K. Chalup, and M. J. Ostwald, Learning attention-driven
activities using pedestrian trajectory analysis in video data, 2012. (under
review)
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• Aaron S. W. Wong, Stephan K. Chalup, Shashank Bhatia, Arash
Jalalian, Jason Kulk, Steven Nicklin, and Michael J. Ostwald. Visual
gaze analysis of robotic pedestrians moving in urban space. Architec-
tural Science Review, 2012.

Conference Proceedings

• A. Jalalian, S. K. Chalup, and M. J. Ostwald, Analysis of pedestrian
spatial behaviour using GDTW-P-SVMs, International Joint Conference
on Neural Networks (IJCNN 2012), IEEE Computer Society, 2012.

• A. Jalalian, S. K. Chalup, and M. J. Ostwald, Simulating pedestrian
flow dynamics for evaluating the design of urban and architectural space,
in 44th Annual Conference of the Architectural Science Association, C.
Murphy, S. J. Wake, D. Turner, G. McConchie, and D. Rhodes, (Eds.)
Auckland, New Zealand, 2010.

• A. Jalalian, S. K. Chalup, and M. J. Ostwald, Agent-agent interaction as
a component of agent-environment interaction in the modelling and anal-
ysis of pedestrian visual behaviour, in The 16th International Conference
of the Association for Computer- Aided Architectural Design Research
in Asia, C. M. Herr, N. Gu, S. Roudavski, and M. A. Schnabel, (Eds.),
Newcastle, Australia, 2011, pp. 555-564.

• A. Jalalian, S. K. Chalup, and M. J. Ostwald, Intelligent evaluation of
urban streetscape designs by analysing pedestrian body dynamics, in The
Third International Workshop on Advanced Computational Intelligence,
Washington, DC, USA: IEEE Computer Society, 2010, pp. 442-447.

• A. S. W. Wong, S. K. Chalup, S. Bhatia, A. Jalalian, J. Kulk, and M. J.
Ostwald, Humanoid robots for modelling and analysing visual gaze dy-
namics of pedestrians moving in urban space, in 45th Annual Conference
of the Architectural Science Association, Sydney, Australia, 2011.
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1.6 Thesis Overview

• Chapter 2 depicts the proposed models to simulate pedestrians’ spatial
behaviour in urban spaces. The models provide a set of behavioural char-
acteristics that can be used to analyse pedestrians’ behaviour in urban
designs. The initial models are described with and without considering
pedestrians’ visual attention. Virtual attractive objects with variable
levels of attraction along with the “agent’s need vector” and “object cat-
egory vector” are introduced in this chapter. A comparison between
goal-driven and stimulus-driven attentions is given and the proposed ap-
proach to model these spatial behaviours is represented. The results
of using the simulation are discussed and compared with and without
considering the impacts of visual attention.

• Chapter 3 outlines the proposed method to recognise and track pedes-
trians in video data captured at Wheeler Place, Australia. The tra-
jectory data are then used to reveal the impact of visual attractors on
pedestrians’ spatial behaviour. A literature review of previous works in
pedestrian detection and tracking is given and shortcomings and advan-
tages of using each method are discussed. Different stages of the pro-
posed system such as background detection, shape-based, motion-based
and depth-based feature extraction, feature classification, and feature ex-
traction for tracking are presented. The results of applying the system
to Wheeler Place video data are discussed in this chapter.

• Chapter 4 reviews a maximum margin kernel-based classification tech-
nique known as Support Vector Machines (SVMs). It provides an intro-
duction on the main concepts of kernel-based learning and discusses the
SVMs as an example classifier. The usage of common kernels in SVMs
and their features are discussed. The Potential Support Vector Machines
(P-SVMs) and their advantages over SVMs with conventional Gaussian
Kernel are highlighted.

• Chapter 5 presents the proposed technique for sequential data analysis
where each data object is characterised by a series of numerical values
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that may have different lengths for different data objects. Pairwise clas-
sification is discussed as a method for multi-class classification problems.
The usage of Dynamic Time Warping in Gaussian kernel in SVMs is
argued. The proposed classification technique is compared with several
other classification techniques that are capable of handling data objects
with different lengths. The advantages of the use of the proposed method
over using DTW-SVMs are highlighted.

• Chapter 6 presents the proposed spatial behaviour analysis system.
The system is employed to classify simulated as well as real-world data
sets. Different classes of behaviours that are detectable using each of the
data sets are introduced. The classification techniques that are capable
of handling data objects with different lengths are employed to analyse
pedestrians’ behaviour. Classification results are compared for different
classifiers as well as simulated and real-world data.

• Chapter 7 concludes the research and recommendations are made for
future work into approaches for analysing pedestrians’ behaviour in urban
spaces.

1.7 Summary

This chapter has laid the foundations for the thesis by introducing the back-
ground and origins of the research into pedestrian behaviour analysis ap-
proaches for investigating the impacts of visual attractors on spatial behaviours
in urban spaces. The aims and objectives of the research have been described.
The main research contribution will be discussed in Chapter 7. The structure
of the various studies and investigations within the thesis has been discussed.
This chapter has prepared the reader to follow the evolution of the research
as it investigated approaches for analysing pedestrians’ behaviour in urban
spaces.

The next chapter will describe the proposed methods to simulate pedes-
trians’ behavioural characteristics. It will demonstrate the proposed software
that will be employed to simulate pedestrians’ reactions to modelled visual
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attractors in an urban space. The generated behavioural data will be utilised
in the analysis system to distinguish between different classes of behaviours.
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Human Behavioural
Characteristics



Chapter 2

Human spatial behaviour
simulation

The content of this chapter has been published in [91, 92, 93].
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The analysis of pedestrian flow dynamics in indoor and outdoor areas is an
important facet of architectural and urban design. While a range of software
programs have been developed in recent years to model idealised pedestrian
flow between entry and exit points in a plan, such software typically neglects
to consider the impact of “attractors” and that of the human gaze. In public
places, including both external environments (streets and plazas) and inter-
nal spaces (malls and museums), attractors, like billboards or display stands,
distract pedestrians from following a direct path towards their destinations.
While there are a range of possible names for these visual distractions, in the
present study they will be referred as attractors. It can further be assumed
that these objects have different levels of attraction; some will attract a pedes-
trian’s gaze, while others will completely interrupt their passage. An object
with a low level of attraction, such as a piece of writing on the wall, would
typically not attract pedestrians who walk fast. However, by placing objects
with higher levels of attraction into the scene it is possible to reduce the speed
of pedestrians, making them susceptible to being attracted to the objects with
lower levels of attraction. The importance of this type of analysis is that it can
be a useful predictive and analytical tool not only in architecture and urban
design, but also in crowd management, transport facilities management, crime
prevention, disaster planning, marketing, and epidemiology. Thus the ability
to predict the response of a pedestrian in an urban area to his or her surround-
ings is important in estimating the effects of changes in the built environment.

2.1 Previous Works

2.1.1 Analytical Models

The reality is that, contrary to most software simulations, pedestrians do not
always follow a simple path along the line connecting origin to destination.
Furthermore, in contrast to vehicular flows, which circulate along fixed corri-
dors of the road environment and are subject to specific traffic rules, pedestrian
flows are characterised by a significant degree of randomness, so that one could
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consider that each individual’s trip is unique [199]. Simulating and analysing
such a big data-set of behaviours calls on an advanced intellectual method in-
volving many ingredients, such as navigation and orientation, evaluation and
decision making, variation of personal behaviour, and crowding. Therefore,
computational tools are crucial to map this randomness into a real-time model
that simulates pedestrian behaviour. Regression models [142], gravity model
formulations [138], doubly-constrained models [70], generic coupled differential
equations [63], and discrete choice models [4] are all examples of applied analyt-
ical computational models in pedestrian behaviour simulations. In analytical
models, changes in pedestrian behaviour are expressed as a mathematical func-
tion that controls the average pedestrian movement. Since the analytical mod-
els apply the same rules to all simulated individuals and perform a simulation
based on average characteristics, they are restricted in simulating pedestrian
behaviour that in reality would vary much more depending on different plans,
personal behavioural characteristics, and social preferences.

2.1.2 Cellular-Automata

Cellular automata (CA) is a discrete model employed for modeling complex
phenomena in many research areas, including statistical physics, computer
networks, sociology, architectural design, and fluid dynamics [33]. It is named
after the principle of automata (entities) occupying cells according to localised
neighborhood rules of occupancy [18].

One of the important usages of CA is in modelling traffic flow dynamics.
It also has been used in pedestrian modelling because pedestrians are flexi-
ble and intelligent in changing directions and their movements have a large
degree of freedom. Blue and Adler have applied Cellular Automata (CA)
micro-simulation to model pedestrian flows and demonstrated that these mod-
els produce acceptable fundamental flow patterns [18]. Authors in [203] de-
scribe a method that uses simple CA local rules describing the behavior of each
automaton to create an approximation of actual individual behavior.

The proposed methods that employed CA for pedestrian dynamics are
based on the following approaches:
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• The models in this group can be considered as generalizations of the
Biham- Middleton-Levine model for city traffic [16], and named as biased
random walker model [187, 128, 134].

• Models in this group have employed a floor field that modifies the tran-
sition rates to neighbor cells, inspired from the process of chemotaxis as
used by some insects [23, 111].

Although cellular automata models are computationally fast and therefore
suitable for large scale computer simulation [12], the accuracy of the models
depends on the cell size used in CA. For instance all the proposed methods
that used CA to model pedestrian flow dynamics have to occupy individuals
in different cells. This implicitly restricts movement of the simulated agents to
the centre of cells.

2.1.3 Multi-Agent Based Simulations

One of the useful ways to model pedestrian behaviour and overcome the short-
comings of the analytical models is to develop an agent-based simulation. An
agent-based simulation is a computational model for modelling the behaviour
of autonomous agents. In agent-based modelling (ABM), a system is mod-
elled as a collection of autonomous decision-making entities called agents [19].
For an architectural or urban simulation to be useful for designers, the agents
should mimic real pedestrians and they should be of a number of different
types with different movement abilities. It also should be possible to change
their characteristics and numbers to fit the circumstances being examined.

Considerable research has been done on the topic of multi-agent-based sim-
ulation systems [19, 199, 198]. For instance researchers in Catania [24] per-
formed an agent-based simulation of people visiting and evacuating Planimetry
of Castello Ursino in emergency situations. They modelled the environment
in 2D using the NetLogo platform, which is a multi-agent simulation software
[190]. Francesca Camillen [24] has confirmed the usefulness and the effective-
ness of agent-based simulations in the design and analysis of complex social
systems. Such simulations are used to support more traditional strategies al-
ready available to the engineers. For example Gipps and Marksjo [62] have
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presented a macro-simulation cellular approach to model interactions between
pedestrians, which is intended for use in graphical computer simulation.

In agent-based pedestrian simulation, cellular automata and intelligent
agents have had a huge growth in adoption in recent years [63, 24, 177]. In
another example, the team of Kazuhiro Yamamoto [197] have proposed the
use of real coded cellular automata as a new numerical model for pedestrian
dynamics. They have obtained the critical number of people beyond which
clogging appears at the exits of rooms. In all cellular approaches, researchers
have assumed that only one agent can be placed in each cell. Cellular ap-
proaches ease the way for simulating pedestrians; however they also reduce
the accuracy of pedestrian models in urban areas. While agent movements in
cellular models are limited by cell sizes, in the real-word pedestrians are not
limited to follow cells and can choose their next step in any direction.

2.1.4 Pedestrian Simulation in Urban Spaces

Placing virtual pedestrians in architectural space aids in analysing the effec-
tiveness of the space and improving the design of the space. Thiele [178] has
discussed the importance of virtual architecture in design and using the com-
puter world as a suitable medium by which designers can convey the human
side of design. To demonstrate the idea of using simple intelligence (SI) in-
stead of artificial intelligence (AI), an outline of Cura, a virtual presenter, was
presented by the author. Simulating the behaviour of pedestrians in “normal”
situations is also important in urban planning [97], land use [150], and traffic
operations [27]. By analysing this behaviour in different spaces the usage of
those spaces can be assessed.

Behaviour normality analysis is an active research topic in increasing the
security of public places such as museums, parks, and cinemas. One of the
most popular methods used to detect abnormal behaviours is comparing the
behavioural characteristics with the behaviours most frequently observed in
the past. Utilising advanced technology increases our computational abilities
to employ complex algorithms for comparing pedestrians’ behavioural charac-
teristics. For instance [176] proposed a computational method to learn motion
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patterns and detect anomalies by human trajectory analysis. They employed
HMMs (Hidden Markov Models) to model time-series features of human po-
sitions. Using a similarity matrix of HMM mutual distances and k-means
clustering they acquired features of human motion patterns.

2.2 Pedestrian Spatial Behaviour Simulation

A multi-agent system with the characteristic dynamics of a crowd of moving
pedestrians in a section of an abstract urban 2-dimensional environment is
proposed. A similar approach to 2D mapping of environments has previously
been proposed [118] and it has also been used in robotics for the exploration of
an office-like indoor environment using a multi robot team [116]. The proposed
approach is based on artificially generated abstract point-like agents. In the
proposed agent-based pedestrian behaviour simulation, each agent individually
assesses its current situation and makes decisions on the basis of its current
state and a set of rules.

In the simulation, agents may carry out various behaviours resembling real
world pedestrian behaviour in an urban streetscape. The simulation generates
a set of behavioural characteristics - for example walking, running, standing,
getting attracted to an obstacle, and associated changes of the gaze direction.
The developed analyser software (described in section 5) evaluates the simu-
lated behaviours in order to identify the impacts of different walking environ-
ments on pedestrian behaviours. The analyser uses a combination of machine
learning classifiers and statistical algorithms to allow it to learn past normal
behaviours and distinguish between normal and abnormal behaviours in future
data.

Figure 2.1 shows the relationship between different blocks of the pedestrian
analysis system. The system generates pedestrian behavioural data using the
simulation software. A classifier then is employed to distinguish between dif-
ferent spatial behaviour stored in the data. A simple visualisation scheme is
also developed to demonstrate simulated pedestrians (also known as agents)
and the classification results.

To demonstrate the software developed by the author, a simulation using
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Figure 2.1: Architecture of the pedestrian spatial behaviour analysis system.
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the plan of an urban space called Wheeler Place is presented. This space,
located between the two busiest streets in Newcastle (Australia) features a
constellation of attractive objects, offers an excellent test environment for
analysing different pedestrian behaviours (Figure 2.2). The space is next to
Newcastle’s Civic Theatre and City Council Chamber and these two busy build-
ings have made this area one of the Newcastle’s most crowded public spaces.
There are also several places of different levels of attraction in this area itself
including the City of Newcastle Information Centre and Climate Meter, Juicy
Beans Restaurant and Internet Cafe, a big public art work, the Civic The-
atre and Civic Theatre Restaurant. In combination these contribute to offer
several destinations for pedestrians who can be differentiated in behavioural
characteristics, physical characteristics, and personal preferences. As shown
in Figure 2.5 the vicinity’s five entrances (black squares) and exits (red exit
signs) are restricted to several distinguishable points and pedestrians mainly
choose one of these points to enter and exit Wheeler Place.

2.2.1 Pedestrian Behavioural Model

Figure 2.3 demonstrates the agent model in the proposed multi-agent-based
pedestrian simulation. In the real world individuals have several characteristics
representing their spatial behaviours in an urban streetscape, such as speed of
movement, head direction, and location. Table 2.1 describes the parameters
that were used for modelling a pedestrian’s behaviour.

In the simulation each agent is initialised using the described parameters.
Some parameters are generated randomly (such as sight, starting point, desti-
nation, speed category and sight category) and others are calculated based on
those randomly generated (such as location, speed, and angle). In the initiali-
sation step endj(x,y) and start

i
(x,y) are generated based on random values, and

one start-point and one end-point are selected among the defined start-points
and end-points in the proposed urban model.

In the urban model we have different categories of behaviours, which are
defined by the Scat (speed category) and Vcat (sight category). In each category
we have varieties of behaviours defined by a random function. To separate
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Figure 2.2: Aerial one-point perspective plan of Wheeler Place. The locations
of several places of different levels of attraction including the City of Newcastle
Information Centre and Climate Meter, Juicy Beans Restaurant and Internet
Cafe, a big public art work, the Civic Theatre and Civic Theatre Restaurant
are shown.

Figure 2.3: Simulated pedestrian; UFOV (pink area), speed vector (short line),
gaze direction (long line), and the angle between them (α).
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Parameter Description Unit,Symbol
Location Location of an agent in the urban plan at

time t
pixel, (xt, yt)

Speed Speed of an agent at time t, determined by
speed category and location of the agent
relative to its surroundings.

pixel, (dxdt ,
dy
dt )

or β, ‖s‖

Angle The angle between the head direction and
speed vector at time t

degree, αt

Field of view Standard pedestrian’s functional or useful
field of view (UFOV)which is assumed to
be 95◦[10].

degree,
(UFOV )

Sight Random number that represents an
agent’s visual ability. It is associated with
the agent’s “sight category”.

pixel, V

Starting point The first location of the agent in the plan. pixel,
starti(x,y)

Destination Final destination where the agent is going
to leave the urban area.

pixel, endj(x,y)

Speed category 5 different speed categories to model dif-
ferent pedestrian behaviours subject to
speed.

Scat

Sight category 5 different sight categories to model differ-
ent pedestrian behaviours subject to vision
capability.

Vcat

Table 2.1: Pedestrian model parameters

the behaviour of each category from others, in each category the range of
randomness is restricted by defined maximum and minimum values. After
initialising Scat and Vcat for each agent, ‖s‖ (speed) and V (sight) are calculated
based on Scat and Vcat respectively.

In the simulation, when there are no stimuli to attract pedestrians’ at-
tention the angle α, controlling the gaze direction, remains a small random
value. This is because under normal conditions, pedestrians would typically
look straight ahead such that the gaze vector can be assumed to be almost
parallel to the speed vector. In all other conditions, α will be changed accord-
ingly. The aim of each agent is to reach endj(x,y), and therefore the direction
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Figure 2.4: Five possible positions in Wheeler Place where the attractors could
be placed.

of movement, β, is determined by a random value and the direction of an
imaginary line passing through endj(x,y) and start

i
(x,y).

2.2.2 Urban Model

In the proposed simulation the urban model was obtained by using a scan
of a plan of Wheeler Place. As shown in Figure 2.5 the considered area has
five entrances and exits (starti(x,y), end

j
(x,y) : i, j = 1...5). Each attractor is

surrounded by a circle that indicates its assumed level of attraction. The radius
corresponds to the attraction level. In the reported simulation experiments five
positions (Pos#1, Pos#2, ..., Pos#5) were selected, where attractors can be
placed (see Figure 2.4).



2.2. Pedestrian Spatial Behaviour Simulation 28

During simulation, once an agent’s UFOV 1 overlaps with the attraction
area of an object the agent will move towards the object with the maximum
allowed speed in its speed category Scat. Therefore, objects with higher levels
of attraction can attract agents with the same Vcat from further distances. On
the other hand agents with bigger V can be attracted by further objects with
the same level of attraction.

In the urban model the following terms are used:

• image plan: An aerial one-point perspective plan of the area

• start points: The locations of the entrances

• end points: The locations of the exit points

• object location: The location of the attractive object on the image plan
(obj(x,y))

• object visit counter : The number of agents that have been attracted to
the object

• object attraction level : The level of attraction for an attractive object

It is also assumed that boundaries of pathways and other obstacles such as
trees are impermeable.

2.2.3 Spatial Behaviour Simulation

In the simulation each agent assesses its behaviour according to several decision
making rules defined by the pedestrian model and the urban model. In this
section, two major types of agents are defined; “attracted agents” and “normal
agents”. While the former is attracted to an attractive object, the latter has
not seen any attractive object and just moves along the “normal direction of
movement” towards its destination. Normal directions of movement are defined
by the lines between start points and destinations. By selecting a start point
and a destination, each agent has selected one normal direction of movement
in the initialisation stage.

1Useful Field Of View
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Figure 2.5: Wheeler Place simulation in Scenario 1. Representation of: Tra-
jectories (color-coded tracks), Start Points (black squares), Exit Points (red
exit signs), Color-coded Speed (each color represents a speed category), and
Attractors (blue circles).
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Agents may carry out various behaviours roughly resembling real world
pedestrian behaviour in an urban streetscape, such as walking, running, stand-
ing, or becoming attracted to an obstacle. Regarding to pedestrian’s reaction
to the attractors in an urban area, pedestrians may have four different spatial
behaviours:

1. becoming attracted : when they can see the object for the first time, and
they believe the object is attractive for them,

2. not becoming attracted : when they can see the object for the first time,
and they believe the object is not interesting enough for them to move
closer to it,

3. visiting : stopping while they are studying the object, and

4. normal : while they cannot see any attractive object.

In the simulation various behaviours are defined by changing an agent’s
characteristic parameters. To obtain the next location for each agent, the
direction of movement, β(t+1), is calculated as follows:

βt+1 =


tan−1(

endiy−yt
endjx−xt

) + rnd× βosc : normal/not becoming attracted

βt : visiting

tan−1(
objiy−yt
objjx−xt

) + rnd× βosc : becoming attracted

(2.1)
Here rnd is a random value in [0, 1] at time t. Since pedestrians do not walk
exactly in a straight line, this behaviour was simulated by using βosc = 20◦,
which indicates the oscillation range for β.

When the UFOV for an agent overlaps with the circle indicating an object’s
level of attraction, the simulated agent will be notified of the attractive object.
In this case, the agent uses the becoming attracted equation to calculate β(t+1).
By using this equation the agent moves towards the object instead of the end
point. When the agent comes close enough to the object, it will spend some
time standing at the object and studying it. During this period (visiting), the
direction of movement remains constant. At all other times the agent shows
normal spatial behaviour and uses the normal equation to calculate β(t+1).
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In a real world scenario, while pedestrians are moving they do not always
look straight ahead. To simulate this behaviour, αosc is defined as the os-
cillation range for the relative gaze angle αt in normal behaviour, which is
calculated as follows:

α = (rnd× 2× αosc)− αosc (2.2)

In not becoming and becoming attracted behaviours the agent’s gaze vector
points to the attractive object.

To obtain the next location for each agent the speed of movement, ‖s‖,
needs to be calculated. In the simulation five different speed categories were
used for each agent 2. Each category has a maximum speed and a minimum
speed. Agents choose their speed category when they are initialised and this
category remains constant during the agent’s lifespan. ‖s‖ is obtained as fol-
lows:

‖s‖ =


1
5smax(rnd+ scat − 1) : normal/not becoming attracted

0 : visiting
1
5rnd(smaxscat) : becoming attracted

(2.3)

Where smax is the maximum possible speed, and rnd is a random value in
[0, 1]. The 1

5 coefficient depends on the number of speed categories. Since we
assumed that agents travel with five different speed categories, then 1

5 is used.
By applying β(t+1), ‖s‖ and (xt, yt) in the following equations and solving

them for (x(t+1), y(t+1)), we obtain the next location for each agent:{
‖s‖2 = (xt+1 − xt)2 + (yt+1 − yt)2

βt+1 = tan−1(xt+1−xt
yt+1−yt )

(2.4)

Since we assumed the boundaries of pathways and other obstacles such as
trees to be impermeable, an algorithm to extract the boundaries and the ob-
stacles from the image plan was developed using image processing techniques.

2Although human walking speed can vary greatly depending on factors such as height,
weight, age, terrain, surface, load, culture, effort, gender and fitness, it can be categorized
into five distinguishable ranges in urban spaces [22].
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Figure 2.6: Extracted boundaries from an aerial one-point perspective plan of
Wheeler Place.

Otsu’s method, which chooses the threshold to minimize the intraclass variance
of the black and white pixels, was applied to extract objects from the image
plan [146]. The extracted boundaries (as shown in Figure 2.6) and obstacle
information are then used to validate the obtained next location for each agent
(x(t+1), y(t+1)).

2.3 Visual Attention Modelling

Environmental perspective is an extremely important viewpoint of human spa-
tial behaviour analysis. This view assumes that the physical characteristics of
an environmental setting influence our attitudes and actions more than a bi-
ological or cultural traits. Spatial behaviour modelling focuses on the visible,
static and dynamic properties of the physical environment as important fac-
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tors, since socio-cultural variables are harder to measure and less obvious across
behavioural settings. Analysing this behaviour in indoor and outdoor areas is
an important facet of architectural and urban design.

The simulation of pedestrian behaviour allows us to investigate spatial vi-
sual behaviour without the difficulties of real-world data extraction. Planning
pedestrian environments requires assumptions about how real pedestrians will
respond to characteristics of the planned environment. Placing virtual pedes-
trians in an architectural space simulation significantly aids in making the
assumptions more real [178].

Representation of the physical space plays a central role in modelling pedes-
trian spatial behaviour. In public places, including external environments
(streets and plazas) and internal spaces (malls and museums), attractors, like
billboards or display stands or even a group of people, can distract pedestrians
from following a direct path towards their destinations. In urban spaces the
attractors have different conspicuity areas [200]. For instance a high-rise tower
in the centre of a town may attract more attention from a greater distance
than a poster on a nearby wall. The variety of conspicuities were taken into
account by defining different levels of attraction for attractors [90, 91, 93].

In this section an innovative approach is proposed to equip simulated ob-
jects with dynamic levels of attraction [92]. Pedestrian-environment interac-
tions in parallel with pedestrian-pedestrian interactions have significant im-
pacts on pedestrian spatial behaviour and walking patterns [9]. Since vocal in-
teractions are harder to measure and depend on many geometrical and cultural
variables, we focus on the visual part of pedestrian-pedestrian interactions. We
investigate the dynamics of human head pose and eye gaze behaviours, which
can provide significant insight into the context of a spatial behaviour. It has
been shown that gaze direction and eye contact are essential features of group
communication, as they help to elicit behavioural characteristics from others
[44, 5, 106, 11].

Sudden changes in gaze direction may or may not be linked with attrac-
tors. A substantial amount of research in psychology has examined whether
such behaviour is caused by internal stimuli (such as changing the route) or
by external stimuli [87, 152, 137, 158]. While attractors take up a significant
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portion of visual external stimuli, other people’s gaze direction could be consid-
ered as another important category of external stimuli to attract a pedestrian’s
gaze [200]. As the number of people looking at an attractive object (attrac-
tor) 3 increases, the object can attract more attention. The presented system
incorporates the proposed pedestrian simulation system [93].

The system described in this section has been designed to support
pedestrian-pedestrian visual interaction, and models the impacts of eye in-
teractions in changing pedestrian spatial behaviour. The purpose of the simu-
lation is to model and analyse this spatial behaviour in order to have a better
assessment of a planned urban design and its impacts on pedestrian behaviour.

2.3.1 Attention and Eye Movement

The fact that eye movements are linked by attention does not mean that these
two systems are completely mutually dependent. Authors in [77] confirm that
observers can direct their visual attention to different areas of visual space
even while the eyes remain fixed. Thus the relationship between attention
and eye movements is one of partial interdependence. Attention is free to
move independently of the eyes, but eye movements require visual attention to
precede them to their goal [80].

While pedestrians are walking in an urban space their eyes scan their sur-
roundings using saccadic eye movements. Saccadic eye movements occur about
3-4 times per second [14]. The eyes are essentially blind during these move-
ments and the information from the scene is acquired only at fixation points.
Authors in [201] pointed out that the location and sequence of saccades is not
completely random. Eye movements from one fixation point to another are
fast enough that in the simulation we can assume that all the objects in a
certain range are scanned during a timestamp (4 seconds). The range of this
scan varies from one person to another [112] and it mainly depends on the
location that the pedestrian is looking at while walking.

This is modelled by defining different effective ranges for useful field of view
(UFOV) [10]. In the initial stage of the simulation a sight category is assigned

3Sometimes the term “attractive object” is used instead of “attractor” to emphasise that
the attractor is an object in an urban space.
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to each agent. The sight category is a random number that limits the minimum
and maximum range of UFOV. The number of sight categories can be defined
and changed by the user in the user interface of the analyser software.

2.3.2 Agent’s Need and Object Category Vectors

To model pedestrians’ visual attention and the visual impacts of attractors on
pedestrians’ behaviour, “agent’s need vector” and “object category vector” are
introduced here. By using these two vectors we are able to model different
reactions from different agents for the same attractor.

The agent’s need vector (ANV) corresponds to the agent’s aim of walking.
Each element of the ANV reflects a category of need for the agent. The value
assigned to each element expresses how desperate the agent is to satisfy that
particular type of need. For example if an agent is simulating a pedestrian
who is window shopping while he is hungry, the two elements of ANV that
correspond to shopping and food will have higher values than other elements
in ANV for that agent.

On the other hand, the object category vector describes the types of at-
traction attributed to an attractive object or what types of requests could be
fulfilled by that attractive object. Each element of an object category vector
expresses how much the object is able to satisfy an agent’s need. For example
if an attractor is modelling a gift shop that has a drinks vending machine,
the two elements of the object category vector that correspond to shopping
and food will have higher values than other elements in the vector for that
attractor.

2.3.3 Goal-Driven vs. Stimulus-Driven Attention

According to [200], visual attention is either goal-driven or stimulus-driven.
Attention is said to be goal-driven when it is controlled by an observer’s in-
tention and needs. For instance if the observer is hungry and looking for food,
automatically all the food shops will attract his attention. In the simula-
tion, pedestrians’ goal-driven attentions are modelled by the agent need vector
(ANV) and the object category vector. These vectors are assigned to the agents
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and attractors at the initial stage.
In contrast, stimulus-driven attention is controlled by visual attributes of

the object that are not necessarily relevant to the observer’s perceptual goal. In
the previous example, if all the food shops tended to be fast food restaurants,
then a single Persian restaurant among them would capture the observer’s
attention automatically. Stimulus-driven attention is modelled by the object
level of attraction. A bigger value for the object level of attraction means the
object has a stronger impact on an agent’s attention.

2.3.4 Virtual Attractive Objects

The social group is a fundamental and universal feature of human social life.
Group formation is the expansion of bonds of interpersonal attraction due to
the existence of common desires among individuals [81]. Having the same
goal-driven attentions could be considered as one of the major determinants
of group formation in urban environments [26]. In the simulation we assume
that agents who are visiting the same attractive object can form a group.

Group size is an important variable for capturing attention: Large groups
are able to draw more attention than small groups. In order to model how
group formation and group size impact on pedestrian spatial behaviour, we
consider a group of people as an attractive object with a dynamic attraction
level and call it a virtual attractive object Figure 2.7. A virtual attractive
object (VAO) has the same feature set as an actual attractive object. However,
in the case of VAOs, the location and level of attraction vary according to the
location and number of agents in the group.

As agents are walking in the scene they may get attracted to a selection of
attractive objects (virtual or actual). The selection depends on agent needs,
agent location, sight category, UFOV, object location, object category, and
crowd locations. Agents consider attractive objects as temporary destinations.
Once they finish visiting the attractive objects they will continue on their way
towards exit points.
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Figure 2.7: Pedestrian spatial behaviour simulation on the Wheeler Place Plan.
Levels of attraction for attractors are shown with blue circles, and dynamic
attraction levels for virtual attractive objects are shown with orange circles.
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2.3.5 Object Selection Process

Attractive object selection starts by calculating the distance of the agent’s
UFOV and the level of attraction of all the attractive objects that the agent
can see. Among the objects, the one that minimises this distance is the best
object. We assume that actual attractive objects have higher priority than
virtual attractive objects. Therefore the search for finding the best object is
done over the real objects first, then over virtual objects.

Once the best object is found, the Euclidean distance between the agent
need vector and object category vector is calculated. If this distance is less than
a threshold it means that the agent likes/needs the object and its state will
be changed to becoming attracted, otherwise it will be changed to not becoming
attracted. Agents show the same behaviour if the selected object is a VAO, but
instead of studying the object it will join the group and this will increase the
level of attraction of the VAO.

2.4 Experimental Results

The results are reported with and without considering the impact of the “crowd
attraction” in two separate subsections.

2.4.1 Results without Crowd Attraction Impacts

Although human walking speed can vary greatly depending on factors such as
height, weight, age, terrain, surface, load, culture, effort, gender and fitness, it
can be categorized into five distinguishable ranges in urban areas [22]. Figure
2.10 shows five different speed categories and their typical random charac-
teristics for five agents in the proposed simulation. As shown in this figure,
there is a considerable difference in ‖s‖ among different speed categories. Each
agent moves with a random speed within the boundaries of its speed category.
The use of different categories of speed and sight simulates different spatial
behavioural characteristics.

The experiment shown in Figure 2.8 displays the simulated agents’ trajec-
tories. In this example, the five speed categories were used and distinguished
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by colour-coding in the Hue Saturation Value (HSV) colour system. From left
to right the colour bar at the bottom of Figure 2.8 represents speed categories
with higher speed. In this figure each circle represents an attractive object.
The number of agents attracted to each object is shown in the centre of the
circles. The number of agents that have been attracted to an object depends
on many factors including level of attraction for the object, and location of the
object relative to the start points, end points and other objects.

The simulation software, the analyser and their Graphical User Interface
(GUI) were developed in the MATLAB R2010a environment (Figure 2.9). Our
GUI provides several tools to change different parameters of simulation. This
includes changes in maximum number of agents in the scene, methods of train-
ing the classifiers, image plan, start points, end points, number of speed cat-
egories, number of sight categories, levels of attraction for attractive objects,
animation settings and visualization settings. The interface also provides the
ability to save a running simulation and load it in the future. This helps design-
ers to change a variety of settings and examine the impacts of those settings
on the same design. Employing MATLAB and developing the simulation soft-
ware from scratch enables us to store the simulation results in any desired data
format. This provides enough flexibility for other software developers to use
the proposed simulation results in other software and programming platforms.

Figure 2.11 and 2.12 illustrate typical simulated behavioural characteristics
for an agent. As shown in these figures, although the agent could see two
objects, it was attracted to the first one and did not like the second one. The
period that the agent was attracted by an attractive object is called the visiting
period (dark grey areas in the figures). During this period the agent was not
moving and most of the behavioural characteristics remain constant. Just
before the visiting period there is the becoming attracted period. In this period
the agent moves towards the object with the highest allowed speed defined in
its speed category (Figure 2.11).

The β curve also shows a significant change during this period, which rep-
resents change in direction of movement. Figure 2.13 highlights trajectories for
normal and attracted agents in scenario 10. The type of each track is identified
by the analyser using the simulated values for ((xt, yt), βt, ‖s‖, αt and dαt/dt).
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Figure 2.8: Colour-coded speed representation in scenario 2
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Figure 2.9: Graphical User Interface for the simulation software
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Figure 2.10: Five agents with five different speed categories
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While the actual level of attractiveness of an object, to any given person,
cannot be predicted with any accuracy, we can make several informed assump-
tions about object attractiveness to support the early stages of the simulation
testing. For example at Wheeler Place there are five obvious locations that
can represent attractive objects, including the art work and the Civic Theatre,
which can be regarded as highly attractive and the rest as less attractive. In
Figure 2.4, five positions in which to put attractive objects were indicated on
the plan. We assume there are two levels of attraction: high and low. Table 2.2
lists 10 possible scenarios 4 that were considered in the simulation experiments
of Wheeler Place (Figures 2.15, 2.16, 2.17 and 2.18).

Figure 2.14 shows the probability of attraction for different positions in
all possible scenarios with respect to the number of simulated agents. The
results shown in this figure were obtained from simulating 5000 pedestrians
for each scenario. As shown, the 4th position has the highest probability of
attracting agents in all scenarios. Placing a highly attractive object in this
position and a less attractive object in 5th position (as in scenario 2) will
balance the attracted crowds on both sides of Wheeler Place. The last column
of Figure 2.14 shows the probability of attracting a pedestrian to an attractive
object in Wheeler Place. These simulations demonstrate that arranging the
objects based on scenario 2 will result in the highest number of attractions
compared to the other scenarios.

Pedestrian spatial behaviours depend on different plans, personal be-
havioural characteristics, and social preferences. Using analytical models [63]
to simulate these behaviours based on average characteristics, leaves a consider-
able proportion of behaviour categories unexplained. Using multi-agent-based
cellular models, on the other hand, to overcome this problem has its own dif-
ficulties. In the real world, pedestrian movements include a great variety of
speeds and directions. Using cellular approaches [23, 24, 177] to model pedes-
trian spatial behaviours restricts this variation to several available cells for each
agent. The cellular approaches not only restrict freedom of choice in direction

4Because we have 5 positions to put 5 objects, two of which have a low level of attraction
and three with a high level of attraction, the number of permutations for placing objects in
positions without repetition is 5!/(3!× 2!) = 10.
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Figure 2.11: Simulated behavioural parameters for an agent; visiting period
(dark grey area), becoming attracted period (light grey area), not becoming
attracted period (patterned area) normal behaviour (white area)
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Figure 2.12: Simulated behavioural parameters for an agent; visiting period
(dark grey area), becoming attracted period (light grey area), not becoming
attracted period (patterned area) normal behaviour (white area)
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Figure 2.13: Normal (black) and attracted (grey) trajectories of agents in
scenario 10
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Figure 2.14: Probability of attraction for different positions in different sce-
narios
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Scenario# Pos #1 Pos #2 Pos #3 Pos #4 Pos #5
1 low high low low high
2 high low low high low
3 high low high low low
4 low low high high low
5 low low high low high
6 low high high low low
7 low high low high low
8 low low low high high
9 high high low low low
10 high low low low high

Table 2.2: Possible scenarios for two categories (low, high) of attractive objects
in Wheeler Place

Figure 2.15: Scenarios 1, 2 and 3.

at each step but also agents’ speed can only be generated based on the cell
sizes. In contrast, in the proposed approach agents can be designed with a
high degree of freedom. They can have a wide variety of speeds and directions
at each time step (as shown in Figure 2.11 and Figure 2.8).

2.4.2 Results with Crowd Attraction Impacts

The new software system runs a pedestrian simulation on a plan of Wheeler
Place. This place has been selected because: The space is next to Newcastle’s
Civic Theatre and City Council Chamber. These two buildings have made this
area one of Newcastle’s most crowded public spaces. Here crowd attraction is a
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Figure 2.16: Scenarios 4, 5 and 6.

Figure 2.17: Scenarios 7, 8 and 9.

Figure 2.18: Scenario 10.
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Figure 2.19: Agent’s behavioural characteristics with (a) and without (b) the
impact of a VAO

common behaviour, and there are several places of different levels of attraction
such as the City of Newcastle Information Centre and Climate Meter, Juicy
Beans Restaurant and Internet Cafe, a big public art work, the Civic Theatre
and Civic Theatre Restaurant.

Figure 2.19(a) shows the impact of dynamic attraction level on agent tra-
jectory. Agents who are looking at an attractive object may form a group and
this is shown as a virtual attractive object. The level of attraction of a vir-
tual attractive object changes according to the number of agents in the group.
Agents can be distracted by VAOs as well as by actual attractive objects.

As shown in Figure 2.19(b) some agents who have a small sight value might
miss the attractive object. In Figure 2.19(a) the dynamic level of attraction is
large enough to direct all agents’ attention and therefore all agents can see the
attractive object. Agents’ behavioural response to virtual attractive objects
models pedestrian behaviour in the real world where crowd attraction is a
significant component of visual behaviour.

Figure 2.20 illustrates typical simulated behavioural characteristics of an
agent with the impact of VAOs. It shows the speed of movement ‖s‖ and the



2.4. Experimental Results 51

speed of the angle between the movement direction and gaze vector (dα/dt).
The period that the agent was attracted by an attractive object is called the

visiting period. Just before this period there is a becoming attracted period. In
this period the agent moves towards the object with the highest allowed speed
defined in its speed category (see the black curve in Figure 2.20). Agents might
turn their attention to the VAOs prior to the actual ones.

The patterned area in Figure 2.20 represents this behaviour. As shown
in this figure (dα/dt) shows significant change once an agent’s attention is
directed to a virtual/actual attractive object. This describes a pedestrian’s
behaviour when he/she suddenly changes gaze to a visually attractive object.
The proposed analyser can detect this behaviour.

In the previous section ten possible scenarios (SC1-SC10) were defined and
considered in the simulation experiments of Wheeler Place. The scenarios
describe the permutations of the positions of five selected attractive objects
(blue circles in Figure 2.7) [93]. In this section we employed them again with
the new system to show the effects of VAOs and ANVs on the number of
attracted agents.

Table 2.3 shows the average probability of attraction for different positions
in different scenarios with respect to the number of simulated agents. The
results in this table were obtained from simulating 5000 pedestrians for each
scenario. These results suggest three conclusions:

1. The introduction of ANVs always decreases the average probability of
attraction.

2. The introduction of VAOs (i.e. step from row 1 to row 3 or from row 2
to row 4 in Table 2.3) increases the average probability of attraction in
the absence of ANVs for all scenarios. However, in the presence of ANVs
this increase was not consistently observed.

3. Scenario 2 (shown in Figure 2.19 and SC2 in Table 2.3) has the highest
probability of attraction independent of the presence or absence of VAOs
or ANVs.

The experiments also confirm that if we increase the number of agents in
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Figure 2.20: Simulated behavioural parameters; becoming attracted to a vir-
tual attractive object (patterned area), becoming attracted to an actual at-
tractive object (grey area), visiting period (green area), attention without be-
coming attracted (blue area)
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VAO ANV SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10
NO NO 0.49 0.52 0.46 0.47 0.47 0.45 0.46 0.47 0.44 0.45
NO YES 0.25 0.26 0.24 0.19 0.25 0.22 0.24 0.25 0.18 0.21
YES NO 0.54 0.57 0.52 0.53 0.55 0.51 0.54 0.54 0.50 0.52
NO YES 0.24 0.32 0.30 0.25 0.24 0.27 0.24 0.23 0.29 0.23

Table 2.3: Average probability of attraction

the scene, the average probability of attraction will be increased. This clearly
shows the impact of crowd attraction on pedestrian spatial behaviour.

2.5 Summary and Discussion

This section records the development and testing of a new multi-agent-based
software simulation for pedestrian spatial behavioural analysis in urban space.
The simulation adds two unique features to the conventional model: gaze vec-
tor and attractor objects. The benefits of this new approach become especially
clear in cases of complex spatial arrangements where changing the configura-
tion of walking environments (and thus adapting designs) is possible. A soft-
ware system and its GUI were developed to read plans, extract boundaries and
obstacles from them, run the simulation and then analyse behavioural char-
acteristics of simulated agents. The GUI offers a user friendly environment
for architects who may not be familiar with complex computer programming
problems.

The dependency of attention and visual gaze direction was discussed. An
innovative model was proposed and tested to simulate goal-driven attention
and stimuli-driven attention with the agent need vector (ANV) and the ob-
ject level of attraction. The proposed model includes group formation and the
effects of group size on directing pedestrians’ attention. The simulation was
run for a real-world space, Wheeler Place in Newcastle. Different scenarios
with different configurations and the impacts of considering crowd attraction
on pedestrian behaviour were presented and discussed. The experimental re-
sults demonstrate that the new system can provide significant support for
understanding how changes in the configuration of the physical/visual built
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environment are reflected by measurable changes in agent behaviour.
To compare the simulated and real-world behaviours and provide real-world

behavioural characteristics to the analysis system, the next chapter will de-
scribe the proposed system for pedestrian detection and tracking. The system
employs a single optical camera on a fixed platform to track individuals at
Wheeler Place.
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This chapter explains the methods that are utilised to extract objects from
the background image, distinguish pedestrians from other objects, and track
detected pedestrians. The methods are developed to track pedestrians at
Wheeler Place. Extracted trajectory data will be used in the proposed outlier
detection system to analyse pedestrians’ walking patterns.
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3.1 Background and Previous Works

3.1.1 Region of Interest Reduction

A region of interest (ROI) is a selected subset of samples within a data set iden-
tified for a particular purpose. In image processing it is defined as a portion of
an image that you want to filter or perform some other operations. The con-
cept of a ROI is commonly used in image processing and pattern recognition.
An ROI contains no image data. It is not an image itself, but a placeholder
that remembers a defined location within an image [133].

The impacts of using ROIs become more significant when different algo-
rithms are applied on different areas of an image. For instance in pedestrian
detection algorithms, ROIs contain candidate regions where pedestrian exis-
tence is possible. As the algorithm progresses towards recognising pedestrians,
the number of candidates will be reduced and eventually all regions contain
pedestrians only. This routine is called multistage ROI reduction. A set of
algorithms is applied at each stage to narrow down the number of candidates.
The complexity of the algorithms increases as the pedestrian detection pro-
gresses to its final stage. Since the number of candidates in later stages is
lower than early stages, it is more efficient to apply complex algorithms on the
later stages.

The first stage in ROI reduction consists of algorithms to distinguish be-
tween background and foreground objects. There are two types of background;
“moving background” and “fixed background” [180, 131]. Moving background is
a result of installing the camera on a moving platform (such as vehicle). In this
case, the background detection is a complicated and time consuming process
and it needs additional hardware. Authors in [155] modeled the intensity value
of each pixel as a Gaussian distribution that can be learned and adopted along
the image sequence. In their approach each pixel in each frame is modeled as
an independent statistical process, which is very time consuming. A special
hardware is required to obtain background images in real-time using multiple
vector calculation in parallel. In the applied method for pedestrian detection
and tracking at Wheeler Place an optical camera installed on a fixed platform
is used.
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The most popular approach to detect background in a fixed platform cam-
era is to use an initial background image. The initial background image is ob-
tained when there is no object in scene. Using an initial background image is
very sensitive to light changes. To solve this problem, instead of using one static
background image, a dynamic background image with an updating method is
used. In the field of pedestrian detection and tracking, the average framing
has been employed for upgrading the initial background [71, 83, 147, 131]. The
average framing is based on averaging the intensity values of background re-
gions in a stack of images [31]. It could be employed along with the “block
matching algorithms” to obtain more accurate results [95, 30]. In the pro-
posed method for pedestrian detection, the average framing along with a block
matching algorithm is employed for background detection.

Depth information has been utilised to distinguish between background
and foreground objects and also to reduce the number of hypotheses in ROIs
[49]. By using depth information, we are able to estimate the real-world size of
an object in the image and compare it with the size of the object (pedestrian)
that we are looking for [59].

Stereo cameras have been extensively used to extract depth information
from images [206, 78, 103]. Stereo cameras have been used in order to segment
the scene into blobs using disparity discontinuity. A split-and-merge procedure
has been applied to form objects with size/shape constraints for pedestrians
[206, 103]. The most common algorithm used for calculating the distance of
objects using stereo cameras is the “dense disparity map estimation” algorithms
[104, 49, 59, 105]. A dense disparity map shows the relative distance of objects
to each other in the scene. It uses the difference between the location of an
object in the left and right images and the camera specifications to find the
distance of objects with respect to the camera. Currently stereo cameras have
a small field of view and therefore using them to cover large outdoor areas
would not be feasible. Also object matching algorithms to obtain the dense
disparity map are very sensible to noise and they have been employed in indoor
areas [103].
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3.1.2 Pedestrian Detection

Feature extraction is a fundamental stage in detecting pedestrians. Features
describe the possible patterns of pedestrians’ visible characteristics. Two types
of features have been extracted to recognise pedestrians in digital images:

1. Motion-based features: These features describe pedestrians’ movement
dynamics in a sequence of video frames. They represent differences be-
tween human dynamic characteristics and other objects in the scene.
Speed of movements, acceleration, and direction of movements are ex-
amples of these types of features. The block matching algorithm has
been extensively used to estimate the “motion vector”1 for each block in
the image [95]. The motion vectors improve background modelling by
reducing the number of candidate regions in the ROIs [30, 61, 59, 71].
For instance excluding regions that move faster than the highest possible
speed for pedestrian movement can reduce the number of non-pedestrian
regions considerably [30, 71].

2. Shape-based features: Shape-based features describe the appearance of
the objects, such as height, width, height to width ratio, shape, and
area. The simplest usage of these features is to set a threshold to remove
objects when their shape-based features do not fall into the desired range
defined by human body shape. For instance in [59, 180] a threshold has
been enforced on both height and width of the foreground objects to
remove too wide and too tall objects from ROIs. Shape-based features
and motion-based features could be combined to remove non-pedestrian
objects from ROIs more accurately [95].

Extracting features to detect pedestrians has also been performed using
“active sensors”. An active sensor is a remote-sensing system that transmits
its own radiation to detect an object or area for observation and receives the
reflected or transmitted radiation. Table 3.1 summarises different types of

1The motion vector is the key element in the motion estimation process. It is used to
represent a block in a picture based on the position of the block (or a similar one) in another
picture, called the reference picture.
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Sensor Type Range Feature Cost Algorithm
Complexity

Optical Camera Medium Rich color and
shape information

Cheap High

Laser Scanner Large Work in darkness,
cold and hot
weather

Very ex-
pensive

Low

Thermal Infrared Medium Work in darkness Medium Medium
Radar Small High range resolu-

tion
Expensive Low

Table 3.1: Comparison of different type of sensors

active sensors used in the pedestrian detection research area. In terms of
image processing, active sensors refer to special types of sensors that provide
physical information of objects in a scene, such as temperature and distance.
Using active sensors was not very common in the past because they were too
expensive and not easily accessible. Although they are currently affordable for
applications that need few of them, they are still too expensive for applications
that need many sensors to cover a large outdoor area.

Because thermal infrared radiation is emitted by the human body, ther-
mal infrared sensors have been used for pedestrian detection extensively [122].
Infrared sensors can only be used under special conditions. For example pedes-
trians usually wear very thick clothes in winter or cold weather so their body
temperature cannot be sensed by an infrared sensor. We have the same prob-
lem in hot weather conditions. In some hot weather conditions where the
environmental temperature is higher than the body temperature or where it
is close to body temperature, thermal infrared radiation is emitted by the
environment more than the body. So in both cases, very hot and very cold
weather conditions, infrared sensors cannot provide the information that we
need to detect pedestrians [122, 41]. For solving this problem sensor fusion2

has been recommended. Infra-red sensors and laser scanners have been used
2Sensor fusion is the combining of sensory data or data derived from sensory data from

disparate sources such that the resulting information is in some sense better than would be
possible when these sources were used individually.
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in combination with visual cameras in order to improve the performance and
reliability of visual systems [21, 41]. Currently, the use of laser scanners and
infrared sensors is too expensive to cover large areas.

The next stage, after extracting the desired features from objects in ROIs,
is to use the features in a learning-based technique to model pedestrians [48,
103, 21]. [148] pioneered the use of Haar-wavelet features in combination with
a Support Vector Machines (SVMs) [181]; this approach was subsequently
adapted by [47] and others. To reduce the complexity of pedestrian detection
algorithms, component-based analysis has been utilised. Dividing ROIs into
sub-regions is one of the most popular approaches that uses component-based
analysis [170]. Individual results of analysing each component are combined by
a second layer of classifiers to recognise pedestrians. While dividing ROIs into
some fixed sub-regions simplifies the detection, authors in [133] have employed
a more dynamic method and constructed sub-regions according to the location
of certain body parts. The proposed approach in [133] has extended the work
of Papageorgiou and Poggio [148] to four component classifiers for detecting
head, legs, and left/right arms separately. Additional attempts have been
made towards reducing classification complexity by manually separating the
pedestrian training set into non-overlapping sub-sets (i.e. based on pedestrian
heading direction or gaze vector) [170, 174].

3.1.3 Pedestrian Tracking

Tracking has been proposed to localise the objects of interest (pedestrians)
in time space. Though as a natural extension of detection, tracking has its
own problems in recognising and identifying pedestrians in consecutive frames.
Tracking could be regarded as the most popular topic in visual surveillance.

Template matching algorithm is the most popular method for visual track-
ing. The templates with different sizes have been sequentially applied to de-
tect pedestrians with different shapes and sizes [41, 180]. The algorithm has
been coupled with a graph-matching-based tracking algorithm combined with
“Hausdorff distance"3 to compare two point sets and find the best match be-

3Hausdorff distance [43] is the “maximum distance of a set to the nearest point in the
other set.”
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Table 3.2: Summary of previous approaches for pedestrian detection and track-
ing.

References The Main Purpose Feature Extraction
Method

Hardware

[103] Intelligent transporta-
tion systems

Motion estimator Stereo
cameras

[122] Intelligent transporta-
tion systems

Sensor fusion Infrared
sensors

[100] Guiding idle customers
at a shopping centre

Background modelling
using a sensor network

Laser
scanners

[21] Pedestrian localisation
in urban areas

Sensor fusion Laser
scanners

[49] Collision avoidance Depth information Stereo
cameras

[101] Estimating visiting
patterns

RFID tag localisation RFIDs

[41] Detection and tracking
at night time

Head detection Infrared
sensors

[71] Detection and tracking Dynamic background
estimation

Optical
cameras

[95] Collision avoidance Motion estimators Optical
cameras

[179] Evaluating visitor’s
behaviour

dense grid visibility
graph

Robots

tween templates [83]. Table 3.2 summarises different methods for pedestrian
detection and tracking.

Depth-based features are commonly used to detect and track pedestrians.
As shown in Table 3.2 depth-based features have been extracted using laser
scanners, stereo cameras, singular optical cameras, RFIDs, and infrared sensors
[55, 56]. However, compared to active sensors of this nature, optical vision
provides a much higher spatial resolution at a lower cost. Furthermore, being
passive, there is little potential for interference with the environment [60, 99].

Some 3D techniques adopt an overhead viewpoint for the camera stereo
rig in order to minimise the occlusion between people that can occur with



3.1. Background and Previous Works 62

more oblique camera angles. In [74] a stereo camera is installed above a door,
pointing downwards, towards the ground-plane with a view to count shop-
pers as they enter or exit a retail environment. Techniques using this stereo
camera setup have the same disadvantages as 2D techniques that employ this
viewpoint. In general, stereo cameras are only applicable to indoor scenarios,
which restricts the maximum height at which the camera can be placed. For
example, for retail scenarios the ceilings are only 2.5-3 meters high [15]. The
field of view can be limited in this short height unless a wide field of view
lens is employed. However, this type of lens can result in significant occlu-
sion problems [74]. Therefore, with overhead camera viewpoints a trade-off
exists between the field of view and occlusion. A different approach is taken
in [75], which introduces another plane-view statistic called the height map.
In the height map each ground-plane bin contains the highest point above the
ground-level plane that is projected into that bin. It is effectively a simple
orthographic rendering of the shape of the 3D point cloud when viewed from
overhead [75]. The pedestrian tracking from the height map can be achieved in
a similar manner to that of occupancy or volumetric maps, for example [86, 7]
simply threshold the height map and use connected component analysis (CCA)
to obtain pedestrian regions. However, using this approach the movement of
relatively small objects at heights similar to those of peoples’ heads, such as
when a book is placed on an eye-level shelf, can appear similar to the motion
of a person in a height map [74].

There are two broad types of methodologies for tracking algorithms that
use 3D information; continuous detect-and-track and single detect-and track.
3D information is mainly used to resolve ambiguities and therefore can be
used within both approaches. In tracking pedestrians using 3D information,
the position of a person in the current frame is typically used to disambiguate
between pedestrians in subsequent frames. This position is defined by some
3D feature point of the object, for example the 3D position of the top, bottom
or centroid of the person [102], or the centroid of the person’s head region
[13, 123]. Some of these features are more robust than others, for example the
centroid of a 3D cluster can be more robust than the top or bottom of the
cluster region, particularly in outdoor scenes where the object may be far from
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the camera [17]. However, during occlusion the real and estimated centroids
of a full body region may differ significantly, whereas the centroid of the 3D
head region can be more robust and remain relatively unaffected.

Using depth information along with several other shape-based features that
can describe the differences between pedestrians’ bodies and other objects in
the scene as the inputs of a learning technique, will result in an accurate
pedestrian detection and tracking system. The following subsections describe
my approach to detect and track pedestrians using a single optical camera
installed on a fixed platform at Wheeler Place.

3.2 Pedestrian Detection and Tracking at Wheeler
Place

In this section my pedestrian detection and tracking system is described. The
system extracts pedestrian trajectory data from a real-world architectural
space called Wheeler Place. As discussed in the previous chapter, Wheeler
Place is located between two busy streets in Newcastle, Australia. The place
is surrounded by several attractors, which make it a suitable choice for the
analysis of pedestrian spatial behaviour.

The first stage in the system is ROIs reduction, which includes foreground
detection using motion based features. The second stage is recognising pedes-
trians using shape-based and depth-based features, and a classification method
to distinguish pedestrians from other similar objects. The third and last stage
is tracking pedestrians using depth-based and motion-based features. The
whole system is developed to work at Wheeler Place using a fixed-platform
camera. The camera was installed at Wheeler Place for seven days to collect
video data. The video data was analysed to extract pedestrian trajectories.
The trajectory data were then used in the proposed behaviour analyser for
outlier detection, which will be described in later chapters.
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Figure 3.1: Initial background image, where there is no object in the field of
interest.

3.2.1 Region of Interest Reduction

The first step in defining the initial ROIs is to extract moving objects from the
image. This is known as background detection. As discussed in the previous
Section, the most common method for detecting background objects using a
fixed platform is background subtraction. The same method is employed for
background detection in the proposed approach for pedestrian detection. The
initial background image, which does not include any moving object, is shown
in Figure 3.1. However, changes in general visual features the scene such as
changes in daylight or weather conditions cannot be handled using a fixed
background image. The result of background detection using one fixed back-
ground image is shown in Figure 3.2. To overcome this problem a “dynamic
background detection” technique is employed. The technique dynamically up-
grades the background image to adopt the scene characteristics in the current
frame.

To describe the background detection technique an example is given. As-
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Figure 3.2: Background subtraction using a fixed background image. Use of
the fixed background is very sensitive to noise such as illumination changes
and small camera movements.

Figure 3.3: An example frame to apply background detection algorithms (first
frame in the sequence.
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Figure 3.4: An example frame to apply background detection algorithms (sec-
ond frame in the sequence).

sume we want to detect the background in the frame shown in Figure 3.3 using
the initial background image shown in Figure 3.1. To make the edges of the
objects smoother and remove all the small artifacts a smoothing technique is
employed. This includes applying a circular average filter that convolves the
image with a uniform circular averaging filter. Figure 3.5 shows the result
of applying this filter on Figure 3.3. As we are interested in pedestrians’ be-
haviour at Wheeler Place only (the grid patterned area), top part of the scene
(Hunter Street) is excluded from the images. The same filter is employed on
the background image.

Then the current frame and the background image are subtracted. As
shown in Figure 3.6 the resulting difference image contains pixels with an in-
tensity that has changed. To make the moving parts more clear, Otsu’s method
was applied. The method chooses the threshold to minimise the intraclass vari-
ance of the black and white pixels, to extract objects from the image [146].
The result of applying Otsu’s method on Figure 3.6 is illustrated in Figure 3.7.

A threshold is defined to check whether the background image contains
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Figure 3.5: Result of applying the circular average filter on Figure 3.3.

Figure 3.6: Result of image subtraction between the images shown in Figure
3.5 and initial background image.
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Figure 3.7: Result of applying Otsu’s method [146] on Figure 3.6.

only background objects. We call this threshold white ratio (Wr). For ex-
tracting pedestrians at Wheeler Place, Wr is set to 0.18. This value is chosen
experimentally and may vary for other locations with different environmental
settings. If the proportion of the total number of white pixels to the number of
pixels in the image shown in Figure 3.7 is greater thanWr, then it is likely that
the background image needs to be updated. If this happens for five sequential
frames in a row then the following algorithm will be utilised to update the
background image.

To update the background model a method using Local Binary Pattern
(LBP) is employed [76]. In the method, each image block is modelled as a
group of weighted adaptive LBP histograms. LBP is invariant to monotonic
changes in grayscale. This makes the method robust against light changes. The
method compares the histogram of the current frame with the existing K his-
tograms of the background models using a distance measure. The “histogram
intersection” is used as the distance measure [76]. The histogram intersection
for the normalised histograms x1 and x2 is defined as:

H(x1, x2) = Σi min(x1,i, x2,i) (3.1)

where i is the bin index of the histogram. Foreground detection is achieved via
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Figure 3.8: Connected components, which are obtained using Moore-Neighbor
tracing algorithm modified by Jacob’s stopping criteria with eight-connected
neighbour analysis [65].

comparison of the new block histogram xt against the existing B background
histograms selected at the previous time instant. If a match is not found, the
block is considered to belong to the foreground. Otherwise, the block is marked
as background [76]. As mentioned before this method is used whenever the
background evaluation process indicates that the background model needs to
be updated.

The Moore-Neighbor tracing algorithm modified by Jacob’s stopping cri-
teria is employed to trace the exterior boundaries of the detected objects, as
well as the boundaries holes inside these objects in the binary image shown
in Figure 3.7 [65]. An eight-connected neighbour analysis using the tracing
algorithm is utilised to obtain the connected component shown in Figure 3.8.
Afterwards, small objects that occupy less than five pixels are considered as
noise (this threshold is set experimentally). To reduce the ROIs even more,
the “height to width” ratio for the human body is employed as a threshold.
Regions with a height to weight ratio that falls out of a specific range, defined
by the golden ratio, are removed from ROIs. The resulting image is shown in
Figure 3.9.

For further reduction of ROIs, an image difference between the current
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Figure 3.9: Regions with a height to width ratio that does not occur within
a specific range defined by the golden ratio are removed from ROIs. Different
components are shown in different colours.

processing frame and its previous frame is calculated. The two frames are
shown in Figure 3.3 and Figure 3.4. The images are smoothed with the same
technique described before. As shown in Figure 3.10 the resulting difference
image contains pixels with an intensity that has been in the second frame.
The result of applying Otsu’s method on Figure 3.10 is illustrated in Figure
3.11. Regions in ROIs with less than ten percent of their pixels not labelled as
“moved” in this image (Figure 3.9), are considered as non-pedestrian regions
and are removed from the ROIs. The final resulting ROIs are shown in Figure
3.12.

3.2.2 Pedestrian Recognition

After reducing the number of candidate regions in ROIs, an intelligent classi-
fier is employed to distinguish between pedestrian and non-pedestrian objects.
The old approaches of recognising pedestrians have employed a sliding win-
dow. The sliding window technique shifts ROI windows of all possible sizes, at
all locations over the images while performing feature extraction and pattern
classification. This brute-force approach in combination with employing com-
plex classifiers is computationally too intensive [59]. In the proposed pedes-
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Figure 3.10: Result of subtraction of two smoothed frames to find the pixels
that have changed intensity in the second frame.

Figure 3.11: Result of applying Otsu’s method [146] on Figure 3.10 to label
the moved pixels.
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Figure 3.12: Final three regions in ROIs after applying several reduction steps.

trian recognition system, the number of regions in ROIs have been reduced
extensively. This makes it possible to employ a powerful classifier to recognise
pedestrians at this stage. The classification module used for pedestrian recog-
nition utilises a set of features to make the distinction between pedestrian and
non-pedestrian objects. The classifiers used in this module should be able to
provide a complex decision boundary in a high dimensional feature space with
a limited training data set. GDTW-P-SVMs are used as the classification tech-
nique. Gaussian Dynamic Time Warping (GDTW [8, 175]) is a function that
is used as the kernel function in Potential Support Vector Machines (P-SVMs
[79]) to construct the new classification technique. A theoretical justification
and an experimental comparison will be provided in Chapter 5 to support the
idea of the new classification technique.

To make the recognition system invariant to size of pedestrians in the im-
ages, the regions are scaled according to their distance from the camera. The
distance of regions from the camera in Wheeler Place is calculated using a refer-
ence point and the camera Field of View (FOV). This method is also employed
to calculate the real-world height of objects, which aids to track pedestrians
more accurately. To obtain the distance of objects from the camera we need
to calculate the FOV in x-axis and y-axis directions. As shown in Figure 3.13,
the field of view of a camera can be simply obtained using Equation 3.3 and
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Figure 3.13: Camera field of view calculations

Equation 3.2.

FOVy = 2× tan−1
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where FOVy is the camera field of view in the direction of the y axis, and
FOVx is the camera field of view in the direction of the x axis. FOVy and
FOVx are used to calculate the distance of an arbitrary point in the image
plane to the camera. This distance, d, could be obtained by calculating it in
x-axis and y-axis directions using the following equations.

dy = tan (θ + φ)× h (3.4)
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Figure 3.14: Transformation from real-world to 2D-plan coordinates
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where FL is the camera focal length, Ih is the image height, d is the distance of
point A from the camera, h is the height of the camera from the ground, A is an
arbitrary point on the ground, and R is the reference point on the ground with
a known distance of dR from the camera. Extracting depth information from
images using a reference point is a popular approach for applications where
the physical characteristics of the scene and the camera, such as position of
the camera, camera specifications, and distance of a reference point form the
camera, are known [204]. The same calculation can be performed using the
image width, and FOVx to obtain dx and then d.
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d =
√
d2x + d2y (3.8)

ObjectHeight =
h

d
× (d− dR) (3.9)

To detect pedestrians several features are extracted from different parts of
the human body. The legs are the most important part and are very different
from other common moving objects that can be seen in urban areas such as
pets, and trolleys. The “skeleton” of the legs is extracted using the algorithm
described in [114]. This method removes pixels on the boundaries of objects
recursively but does not allow objects to break apart. The remaining pixels
construct the skeleton of the objects. The skeleton has been used as an im-
portant shape-based feature in pedestrian detection applications [95]. Figure
3.15 shows the extracted skeleton from the legs part of some pedestrian image
samples.

Canny edge detection [25] is employed to extract the boundaries of the
detected objects. The edge detection process serves to simplify the analysis
of images by drastically reducing the amount of data to be processed, while
at the same time preserving useful structural information about the object
boundaries [25]. The algorithm method proposed by Canny is an accurate and
robust edge detection algorithm that has been commonly used in pedestrian
detection systems [57].

SVM-based classifiers have shown promising results for pattern recognition
in images. They have been extensively employed in pedestrian recognition
applications [61]. The location of the boundary pixels of the whole pedestrian
body (obtained using Canny edge detector), and the skeleton of the legs part
are used as the input spaces of two DTW-P-SVMs classifiers. An object will
be labelled as pedestrian if both classifiers recognise it as pedestrian.

3.2.3 Pedestrian Tracking

To track pedestrians a new set of features are extracted from the positional
or shape information of the detected pedestrians (bounding boxes). The fea-
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Figure 3.15: Extracted skeleton from the legs part of some pedestrian image
samples [59].

tures include area, width, height, perimeter, distance between box centroids,
distance between median pixels4, distance from the camera, Sum of Squared
Differences (SSD) between colour intensities, and the box mean motion vector.

These features are used to assign pedestrians to existing tracks or initialise
a new track based on the position of the new detected pedestrians. Euclidean
distance (ED) is used as the distance measure to calculate the similarities
between pedestrians in the current frame and a stack of previous frames [36].
The first Nearest Neighbor (1-NN) [37] is used to assign the pedestrians to
the tracks using the calculated similarities. The combination of ED and 1-
NN provides a fast and accurate classification result in pedestrian tracking at
Wheeler Place. A user-defined threshold is defined to create a new track for a
pedestrian who does not match with others.

Features used to track pedestrians and a description of how they are ex-
tracted are listed below:

• pixel-based features: These features are simply extracted by counting
the number of pixels that the detected pedestrian is occupying. They
include area, perimeter, coordinate of box centroids, and percentage of
pedestrian pixels in the bounding box.

• depth-based features: These features are obtained by mapping the 2D
image plane into a 3D real-world plane using the distance of pixels in
the image plane from the camera in real-world. They include distance
of the pedestrian from the camera, real-world height of the pedestrian,
and distance of median pixel from the camera. To obtain the distance

4The median pixel for an object is the average of coordinates of the object pixels in x-axis
and y-axis directions.
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of pedestrians the methods described in Section 3.2.2 were employed.
To show the pedestrians’ trajectories, the trajectories are mapped from
real world-coordinates to the 2D plan of Wheeler Place. The mapping
is performed using the depth information and location of the camera in
the 2D plan. Figure 3.17 shows the result of mapping of the patterned
grid in Wheeler Place to the plan. Red dots in Figure 3.16 are mapped
to blue dots in Figure 3.17.

• motion-based feature: As pedestrians are more likely to follow their di-
rection of movement in the previous frames, the motion vector is ex-
tracted and used as a feature to track pedestrians. A block matching
algorithm (BMA) was employed to estimate the motion vector for de-
tected pedestrians. The block size is defined by the size of each bound-
ing box. The algorithm has been proposed in [95]. It searches for the
best matching block with minimum distance using a search pattern. The
search pattern guarantees a fast and accurate result. The distance mea-
sure used to calculate the similarities between each pair of blocks is the
mean absolute difference (MAD). It is obtained by calculating the aver-
age of the absolute intensity difference between corresponding pixels in
two comparing blocks.

3.3 Experimental Results

Wheeler Place is an architectural space located between the two busiest streets
in Newcastle (Australia), which features a constellation of attractive objects
and offers an excellent test environment for analysing different pedestrian be-
haviours (Figure 3.18). The space is next to Newcastle’s Civic Theatre and
City Council Chamber and these two busy buildings have made this area one
of the Newcastle’s most crowded public spaces.

An optical camera (Panasonic HDC-HS700 [35]) is used for pedestrian de-
tection and tracking at Wheeler Place. They are easily available to the public
for a reasonable price and they are not equipped with any advanced recording
sensors such as laser scanners or infrared sensors. The camera is capable of
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Figure 3.16: Red dots show the location of the patterned grid in Wheeler Place.
These locations are then mapped to a 2-D image plan.

recoding at 50 frames per second with a resolution of 1920 by 1080 pixels. It
is installed on the balcony of the City Council located at the south part of
Wheeler Place at the height of 3.618 meters. Figure 3.19 shows the position
of the camera at Wheeler Place. Figure 3.20 shows a sample frame, which has
been captured by the camera.

The area of Wheeler Place is 23.35 meters by 48.58 meters and cars are not
allowed in this area. Therefore the majority of moving objects are pedestrians
and their belongings. I used my height as a reference point to calculate the
height of pedestrians in Wheeler Place. All samples are scaled to 18×36 pixels
with 4 pixels border to retain contour information.

We assumed that the ground at Wheeler Place is flat. This means the
height of the camera with respect to any arbitrary point on the ground plan
is the same. This assumption adds a small amount of noise to the mapping
results when mapping image plan coordinates to real-world coordinates. This
describes why the mapped points in Figure 3.17 do not lay on straight lines.

The extracted features were scaled to the range of [0, 1]. A five fold cross-
validation technique is used to “tune” the classifier hyperparameters. The
tuning method, the classifier configurations and the classification technique
will be described more precisely in Chapter 5. The LIBSVM [28] and the P-
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Figure 3.17: The result of mapping of the patterned grid in Wheeler Place to
the image plan. The red dots in Figure 3.16 are mapped to blue dots.
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Figure 3.18: Wheeler Place

Figure 3.19: Location of the camera
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Figure 3.20: Field of view for the camera at Wheeler Place. A pedestrian is
looking at the Juicy Bean Cafe.

SVM [79] toolboxes are used for implementing GDTW-P-SVMs. Best values
are selected from a generated hyperparameter set to minimise the error rate in
the training phase.

The videos were captured during a seven week observation period at
Wheeler Place (one day per week). We chose to record pedestrians’ behaviour
on the same day of every week at the same time (every Thursday from 8am
to 5pm). To prepare the training set, pedestrians are labeled manually dur-
ing their traverse in different frames. As a result, 1917 ROIs are labelled as
positive and 212 ROIs are labelled as negative samples with the 0.4s sampling
rate. This data set is used to train the classifiers against the testing data set,
which contains about 77660 positive and negative data samples. Figure 3.21
shows some examples of detected pedestrians at Wheeler Place. 1210 differ-
ent pedestrians were recognised using the detection system. Among them 830

pedestrians were tracked at Wheeler Place and the rest were outside the area
of interest (Wheeler Place), for example walking along Hunter Street.

The attracted trajectories are recognised using our behaviour analysis sys-
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Figure 3.21: Some examples of detected pedestrians using the pedestrian de-
tection and tracking system at Wheeler Place.

tem, which is described in Chapter 5. To balance the number of positive and
negative data samples the weight balancing technique suggested by Vapnik is
employed [181]. Figure 3.22 shows the trajectories extracted from the video
data. Each trajectory is shown in a different colour. The colours are chosen
randomly.

Figure 3.23 shows the result of mapping the real-world trajectories to the
plan of Wheeler Place. The mapping technique is discussed in Section 3.2.3. In
this figure, locations where pedestrians have crossed over more often are shown
with darker red colours. As shown in this figure, there are two locations where
pedestrians show more interests to go. An opening area that leads to a car,
park and the Cafe. The results of analysing the trajectory data are discussed
in Chapter 6.

3.4 Summary and Discussion

In this chapter a system for automatic pedestrian detection and tracking at
Wheeler Place was presented. The data for trajectory extraction were collected
using a single optical camera installed on a fixed platform. The system con-
sists of three parts: i) background detection ii) pedestrian detection and iii)
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Figure 3.22: Tracked pedestrians using the pedestrian detection and tracking
system. Each track is shown in a different colour. The colours are chosen
randomly.

pedestrian tracking. In the background detection we employed a background
subtraction method with an upgrading strategy. For recognising pedestrians,
depth-based, and shape-based features were extracted and used for training
the classifiers. The classifiers (GDTW-P-SVMs) were SVM-based and could
handle input series with different lengths. More descriptions about the clas-
sifier and its trainability will be provided in Chapter 5. Two classifiers were
used to recognise pedestrians using the detection of pedestrian leg skeletons
and body edges. Pedestrians were tracked using pixel-based, depth-based, and
motion-based features.

The presented approach for extracting pedestrians’ trajectories has been
employed and tested at Wheeler Place. The capability of detecting pedestrians
using the discussed system in other urban spaces with environmental features
different to those of Wheeler Place is beyond the scope of this PhD research.
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Figure 3.23: Representation of mapping the real-world trajectories to the plan
of Wheeler Place. Locations where pedestrians have crossed more often are
shown with darker red colours. Dashed lines indicate the field of view of the
camera.
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Support vector machines
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This chapter is an introduction to a maximum margin kernel-based classi-
fication technique known as Support Vector Machines (SVMs). A variety of
support vector classification techniques with a variety of different kernels have
been proposed so far [186, 163]. SVMs are learning systems that use a hy-
pothesis space of linear functions in a high dimensional feature space, trained
with a learning algorithm from optimisation theory that implements a learning
bias derived from statistical theory [38]. This learning strategy introduced by
Vapnik and co-workers is a very powerful method that in the few years since its
introduction has already outperformed most other systems [181]. They have
been employed in a wide variety of applications from time series predication
to document analysis to medical and other scientific fields [163].

4.1 Kernel-Based Learning

In supervised learning, the learning technique is given a training set that con-
tains data objects (input space) and their associated labels (classes). To clas-
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sify a new data object (usually belonging to a test set) a number of sets of
hypotheses could be chosen. Among these, linear functions are the simplest to
employ [38]. However, complex real-world applications require more expressive
hypothesis space than linear functions. Kernel representation is a solution to
increase the computational power of linear functions. The kernel maps the
data objects from the input space to a high dimensional “feature space”, where
in the feature space the data objects could be linearly separable.

The difficulty of a learning task depends on the way it is represented.
Thus, one common preprocessing step in machine learning involves changing
the data representation. This step is equivalent to mapping the input space,
X = {x1, . . . ,xN} to another space, F = {φ(x)|x ∈ X}, where φ(x) is the
mapping function and F is called feature space. The values that are used to
describe the data is called feature and the task of choosing the most suitable
representation is known as feature selection. Figure 4.1 shows an example of
data mapping from non-linearly separable input space to a linearly separable
feature space in two dimensions.

The hypothesis space can be expressed as a linear combination of the train-
ing points, so that the decision rule can be evaluated using just inner products
between the test point and the training points. If we can compute the inner
products in feature space directly as a function of original input points, we call
such function a kernel function. A kernel function is a function K, such that
for all x, z ∈ X

K(x, z) = 〈φ(x),φ(z)〉 (4.1)

where φ is a mapping from X to a feature space. Employing a kernel on the
input space makes it possible to map the data to a feature space and train a
linear machine in that space [38]. To train a linear classifier using the kernel
the only information that is required is the Gram matrix of the training set
in the feature space. This matrix is also known as the kernel matrix and it is
defined as:

K = (K(xi,xj))Ni,j=1 (4.2)

where N is the number of data objects in the input space. In order to employ
a function as the kernel function, it has to satisfy the provided characterisation
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Figure 4.1: Illustration of feature mapping. Data objects in the feature space
are linearly separable, which makes the classification task simpler compared to
the input space.
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in Mercer’s theorem [132]:
“Let X be a finite input space with K(x, z) a symmetric function on X.

Then K(x, z) is a kernel function if and only if its kernel matrix is positive
semi-definite.”

4.2 Support Vector Classification

Support vector machines (SVMs) are a system for efficiently training linear
learning machines in the kernel-induced feature spaces described in the previ-
ous section. An important feature of SVMs is that due to Mercer’s conditions
on the kernels the optimisation problems are convex and hence have no local
minima [38]. An important property of SVMs is their simplicity: they are easy
to implement and to understand [125].

4.2.1 The Maximum Margin Classifier

A margin classifier is a classifier that is able to give an associated distance
from the decision boundary, also known as margin, for each data object. The
margin γi with respect to a real-valued decision function, f , of an example
(xi, yi) is defined to be

γi = yif(xi) (4.3)

The minimum value of the margin with respect to the training set S, that is,

min{yif(xi)|(xi, yi) ∈ S} (4.4)

is called the margin of f , where

S = {(x1, y1), . . . , (xN , yN )|xk ∈ Rn, yk ∈ {−1,+1}} . (4.5)

First, we consider the case of linearly separable data. A training set as defined
in Equation 4.5 is called separable by a hyperplane wTxk + b = 0 if there exist
both a unit vector w and a constant b such that the following equalities hold:

wTxk + b ≥ +1|yk = +1 (4.6)
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Figure 4.2: Illustration of data classification using a variety of different hyper-
planes. Hyperplanes that are too close to the data may increase the chance of
false classification.

wTxk + b ≤ −1|yk = −1 (4.7)

The hyperplane is called a separating hyperplane.
A hyperplane can separate two classes of data in many possible ways (see

Figure 4.2). There is no unique separating hyperplane, unless we add a criterion
to decide which is the best or the optimal separating hyperplane. The idea
of learning from examples is to recognise the pattern of a class by examining
the training points corresponding to that class. New data points are assumed
to lie somewhere around the known training data. Therefore, a hyperplane
should be chosen such that a small shift of the data does not result in false
prediction. If the distance between the separating hyperplane and the training
points becomes too small, even test examples very close to the training samples
may be classified incorrectly. This will increase the chance of false classification
(see Figure 4.3).

Based on this idea, Vapnik and Chervonenkis presumed that the generali-
sation ability depends on the distance between the hyperplane and the training
points. They introduced the generalised portrait, a learning algorithm for sep-
arable problems, by constructing a hyperplane that maximally separates the
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Figure 4.3: Illustration of two false detections using two different hyperplanes.
Test samples “red O” and “red X” are miss-classified by the hyperplanes h1 and
h2 respectively. The hyperplanes are too close to the training data that causes
a small safe margin.

classes (also known as a classifier with maximum margin) [181]:

max
w,b

min
{
||x− xk|| |x ∈ Rn,wTx + b = 0, k = 1, . . . , N

}
(4.8)

The maximal margin classifier is the simplest model of SVMs.

4.2.2 Support Vector Classification

The optimal hyperplane of a training set S is defined by:

(w∗, b∗) = arg max
w,b

ζS(w, b), (4.9)

where ζS(w, b) is the margin of a set of vectors S = x1, . . . , xN and is defined
as:

ζS(w, b) = min
xk∈S

ζk(w, b), (4.10)

and
ζk(w, b) = yk(wTx + b). (4.11)
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Vapnik proves the “uniqueness” of the optimal separating hyperplanes in [181].
To construct the optimal separating hyperplane, the following optimisation
problem should be solved

max ζD(w, b)

subject to ζD(w, b) > 0 (4.12)

||w|| = 1

The problem could be rewritten as

min 1
2 ||w||

2

subject to wTx + b ≥ +1 for yk = +1 (4.13)

wTx + b ≤ −1 for yk = −1

The solutions for Equation 4.13, w0, and Equation 4.12, w∗, are related as
[181]:

w∗ =
w0

||w0||
. (4.14)

The Lagrangian for Equation 4.13 is

L(w, b, e;α) =
1

2
wTw−

N∑
k=1

αk
{
yk
[
wTxk + b

]
− 1
}

(4.15)

where αk ≥ 0 are the Lagrange multipliers for k = 1, . . . , N . The solution is
characterised by the saddle point of the Lagrangian,

∂L
∂w = 0 −→ w =

∑N
k=1 αkykxk

∂L
∂b = 0 −→

∑N
k=1 αkyk = 0

(4.16)

which results in the following classifier

y(x) = sign

[
N∑
k=1

αkykxTk x + b

]
. (4.17)
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Figure 4.4: Illustration of a separating hyperplane with maximum margin.
Support vectors are shown in red.

Equation 4.16 and Equation 4.15 result in the following Quadratic Programing
(QP) problem

max
α

ξS(α) = −1
2

∑N
k,l=1 ykylx

T
k xlαkαl +

∑N
k=1 αk (4.18)

such that
∑N

k=1 αkyk = 0

Many of the resulting αk values are equal to zero. This means that in the
resulting classifier the sum should be taken only over the non-zero αk values
(support vectors) instead of all training data points:

y(x) = sign

[
#SV∑
k=1

αkykxTk x + b

]
, (4.19)

where #SV is the number of support vectors. These support vectors are close
to the separating hyperplane (Figure 4.4).

For nonlinear problems the “kernel trick” is employed. As a result the dual
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problem becomes:

max
α

ξS(α) = −1
2

∑N
k,l=1 ykylK(xk,xl)αkαl +

∑N
k=1 αk (4.20)

such that
∑N

k=1 αkyk = 0

0 ≤ αk ≤ c, k = 1, . . . , N.

Finally the nonlinear SVM classifier becomes:

y(x) = sign

[
N∑
k=1

αkykK(x,xk) + b

]
. (4.21)

The bias, b, is obtained using Karush-Kuhn-Tucker conditions and the follow-
ing equation with any data from the training set.

yk
[
wTφ(xk) + b

]
− 1 = 0 for αk ∈ (0, c) (4.22)

4.2.3 Kernels in Support Vector Machines

The solution to the convex QP problem is again global and unique provided
that one chooses a positive definite kernel for K(., .). This choice guarantees
that the matrix involved in the QP problem is positive definite as well, and
the kernel trick is applicable. For a positive semi-definite kernel the solution
to the QP problem is global but not necessarily unique [181].

Four common choices of kernels are:

1. Linear Function: K(x, z) = xT z

2. Polynomial Function: K(x, z) = (τ + xT z)d, results in polynomial deci-
sion function. Mercer’s condition holds for all τ .

3. Radial Basis Function: K(x, z) = exp(− ||x− z||22 /σ2), gives a Gaussian
radial basis function (RBF) classifier. Mercer’s condition holds for all σ
values. The number of support vectors, the support vectors, the weights,
and bias are all produced automatically by the SVM training and give
excellent results compared to classical RBF [165].
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4. Neural Networks1: K(x, z) = tanh(k1x
T z+k2), gives a particular kind of

two-layer sigmoid network. The architecture of the network is determined
by SVM training. Mercer’s condition does not hold for all possible choices
of k1 and k2 [166].

4.3 Potential Support Vector Machines

Potential support vector machines (P-SVMs) have been proposed by Hochreiter
and Obermayer to analyse dyadic data where two sets of objects (row and
column objects) are characterised by a matrix of numerical values [79]. It
is a maximum margin method for construction of classifiers and regression
functions for the column objects in a data matrix. They defined a form of
representation of data and called it dyadic data. In this form the whole data
set can be represented using a rectangular matrix whose entries denote the
relationships between the corresponding “row” and “column” objects. Pairwise
data representations as a special case of dyadic data can be found for data sets
where similarities or distances between objects are measured.

Traditionally, “row” objects have been called “features” and “column” ob-
jects have been called “feature vector”. To apply SVMs for classification, the
data matrix is interpreted as a Gram matrix. In the case of pairwise data the
Gram matrix is often symmetric. As discussed in the previous subsection the
Gram matrix should be positive semi-definite to obtain a global solution for
the QP. To make the SVMs capable of handling non-positive semi-definite data
matrices, authors in [79] have suggested to consider column and row objects
on an equal footing and interpret the matrix entries as the result of kernel
function. This takes a row object, applies it to a column object and outputs
a number. As a result, the P-SVM can handle rectangular matrices as well as
pairwise data whose matrices are not necessarily positive semi-definite.

P-SVMs have been defined based on a scale-invariant objective function
and a new set of constraints. In this subsection the P-SVM classification
technique is described. The technique will be used in Chapter 5 to introduce
the proposed method for analysing variable-length input series.

1Also known as Multilayer Perceptron (MLP)
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Consider a set
{
xi| ≤ i ≤ L

}
of objects that are described by feature vectors

xi ∈ RN and that form a training set Xφ =
{
x1
φ, . . . ,x

L
φ

}
. The vectors xiφ are

images of a map φ, which is induced either by a kernel or by a measurement
function. Both the selection of a classifier using the maximum margin principle
and the values obtained for the generalisation error bounds suffer from the
problem that they are not invariant under linear transformations [79]. Thus
the question arises, which scale factors should be used for classifier selection?
The suggested approach by [79] is to scale the training data such that the
margin remains constant while the radius of the sphere containing all training
data in the feature space, R, becomes as small as possible. This leads to the
following objective function, which is an upper-bound for the radius of the
sphere containing the scaled data, R∗.

wTXφXT
φw =

∣∣∣∣XT
φw
∣∣∣∣2 (4.23)

The data objects are projected to all P directions of the feature space to make
the “complex features”. The Kij of such complex feature zjw for an object xiφ
is then given by the dot product

Kij = 〈xiφ, zjw〉. (4.24)

Let Zw :=
(
z1w, z2w, . . . , zPw

)
be the matrix of all complex features. Then we

can summarise our knowledge about the objects in Xφ using the data matrix

K = XT
φZw. (4.25)

The following quadratic loss function has been defined as a quality measure
for the performance of the classifier on the training set.

c(yi, f((x)iφ)) =
1

2
r2i , (4.26)

ri = f(xiφ)− yi = 〈w,xiφ〉+ b− yi.
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Then the mean squared error is

Remp [fw, b] =
1

L

L∑
i=1

c(yi, f(xiφ)). (4.27)

The classifier should minimise the Remb, i.e. that

∇wRemp [fw, b] =
1

L
Xφ

(
XT
φw + b1− y

)
= 0, (4.28)

and
∂Remp[f ]

∂b
=

1

L

∑
i

ri = b+
1

L

∑
i

(
〈w,xiφ〉 − yi

)
= 0, (4.29)

where the labels for all objects in the training set are summarized by a la-
bel vector y. Condition Equation 4.29 implies that the directional derivative
should be zero along any direction in feature space, including the direction of
the complex feature vectors zw. This defines the constraints for the classifier.

Based on the objective function (Equation 4.23) and the constraints (Equa-
tion 4.29) the P-SVM optimisation problem for classification is defined as

min
α

1
2α

TKTKα− yTKα (4.30)

subject to −C1 ≤ α ≤ C1, (4.31)

and the P-SVM classification function is

f (xφ) =

P∑
j=1

αjK(x)j + b, (4.32)

where

b =
1

L

L∑
i=1

yi. (4.33)

One of the most crucial properties of the P-SVM procedure is that the dual
optimisation problem only depends on K via KTK. Therefore, K is neither
required to be positive semi-definite nor to be square. This allows not only the
construction of SVM-based classifiers for matrices K of general shape but also
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to extend SVM-based approaches to the class of indefinite kernels operating
on the objects’ feature vectors [79].

4.4 Summary

Support Vector Machines classification is a method of calculating the optimal
separating hyperplane in the feature space. The optimal separating hyper-
plane is defined as the maximum-margin hyperplane in the higher dimensional
feature space. The use of the maximum-margin hyperplane is motivated by
statistical learning theory, which provides a probabilistic test error bound that
is minimized when the margin is maximised.

The original SVM was a linear classifier. However, Vapnik suggested using
the kernel trick. In the kernel trick, each dot product used in a linear algorithm
is replaced with a non-linear kernel function. This causes the linear algorithm
to operate in a different space. For SVMs, using the kernel trick makes the
maximum margin hyperplane fit in a feature space. The feature space is a non-
linear map from the original input space, usually of much higher dimensionality
than the original input space. In this way, non-linear SVMs can be created.
If the kernel used is a radial basis function (RBF), the corresponding feature
space is a Hilbert space of infinite dimension. To use the SVM as the classifier
the kernel employed to map the input space to feature space should be positive
semi-definite (PSD).

Potential support vector machines (P-SVMs) select models using the prin-
ciple of structural risk minimisation. In contrast to standard SVM approaches,
however, the P-SVM is based on a new objective function and a new set of con-
straints, which lead to an expansion of the classification or regression function
in terms of “support features”. The optimisation problem is quadratic, always
well defined, suited for dyadic data, and neither requires square nor positive
definite Gram matrices. The P-SVM suggested a interpretation of dyadic data,
where objects in the real-world are not described by vectors. Structures like
dot products are induced directly through measurements of object pairs, i.e.
through relations between objects.

The concepts described in this chapter will be used in the next chapter to
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present the proposed classification technique. The technique will be employed
to classify behavioural data entries with variable length. The data extraction
method has been explained in the previous chapters.



Chapter 5

Variable-length input series
analysis

The content of this chapter has been published in [88].
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This chapter describes a new technique for sequential data analysis where
each data object is characterised by a series of numerical values that may have
different lengths for different data objects. The new technique, called GDTW-
P-SVMs, is a maximum margin method for the construction of classifiers with
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variable-length input series. It employs potential support vector machines (P-
SVMs) and Gaussian dynamic time warping (GDTW) to waive the fixed-length
restriction of feature vectors in training and test data. As a result, GDTW-P-
SVMs enjoy the P-SVM method’s properties such as the ability to: i) handle
data and kernel matrices that are neither positive definite nor square and ii)
minimise a scale-invariant capacity measure. The new technique elaborates on
the P-SVM kernel functions, by utilising the well-known DTW algorithm to
provide an elastic distance measure for the kernel functions. Benchmarks for
classification are performed with several real-world data sets from the UCR
Time Series Classification/Clustering page, the GeoLife trajectory data set,
and the UCI Machine Learning Repository. The data sets include data with
both variable and fixed-length input series. The results show that in the case
of fixed-length feature vectors, the new method often performs as good as or
even better than the benchmarked standard methods and it is able to classify
data sets with variable-length input series significantly better than existing
methods.

5.1 Previous Works

Within the context of time series analysis, sequential data classification has
received great interest during the last decade. It has been widely applied to
various research areas such as financial data mining [184, 194, 121], moving
object identification [95, 196], medical data analysis [183, 124, 39], trajectory
data analysis [90, 92, 91], time-stamped event data processing [93], and net-
work monitoring [202, 151]. In all applications of sequential data classification
using a kernel-based learning approach the data are represented in a new space
by a similarity/distance measure. In the new space the data are aligned such
that similar features correspond to each other. The features that represent the
same property of the data are called “matching features/time stamps”. Differ-
ent representations of the same sequential data could lead to different matching
feature sets. This makes “sequential pattern matching”, which includes com-
paring sequences of features for the presence of some pattern, a challenging
problem.
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Many distance measures have been proposed to solve the above-mentioned
problem [84, 85, 98, 130]. In sequential pattern matching two types of distance
measures have been employed: “elastic” [43] and “metric” [36] distance mea-
sures. According to these two types, one could group distance measures into
three categories [130]:

1. Non-elastic metric (Euclidean Distance, lp-norms and Correlation [43])

2. Elastic non-metric (Dynamic Time Warping [182] and Longest Common
Sub-sequence [34])

3. Elastic metric (Edit Distance with Real Penalty [29])

Metric distance measures satisfy the “triangle inequality"1. This condi-
tion makes possible the efficient pruning of large numbers of time series
that deviate too far from a matching pattern [96, 130]. Comprehensive
applications have shown that Dynamic Time Warping (DTW) [110, 182]
among elastic non-metric distances and the Euclidean Distance among non-
elastic metric distances outperformed most of the other distance measures
[108, 149, 185, 145, 96].

DTW is a dynamic programming algorithm for measuring the distance
between two sets of sequential data, which can be turned into a linear repre-
sentation in time space (Figure 5.1). DTW has initially been proposed and
used in automatic speech recognition [182]. It aims to align two sequences
of input series by warping the time axis iteratively until an optimal match
between the two sequences is found.

Figure 5.2 shows a warping path for the two sequences in Figure 5.1 ob-
tained using DTW. To find the best match or alignment between the two
sequences one needs to find a path through a grid (Figure 5.2). Whenever
the path moves horizontally/vertically only, it means that several points from
the first/second sequence correspond to one point in the second/first sequence.
The path minimises the total distance between the two sequences. DTW finds
the minimum matching path by providing non-linear alignments between two
sequences.

1d(x, y) ≤ d(x, z) + d(z, y) (“triangle inequality”).
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Figure 5.1: Sequence alignment using Dynamic Time Warping [182]; Illustra-
tion of comparing points in two sequences using Dynamic Time Warping. As
shown, the two sequences have two different lengths. Finding the correspon-
dence between data points has made DTW capable of comparing data objects
with different lengths.
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DTW is capable of elastic and robust sequential data matching, and it
tolerates variable sequence length, which is common in sequential patterns
(for example movement trajectories). Sequences are “warped/stretched” non-
linearly in the time dimension to determine a measure of their similarity inde-
pendent of certain non-linear variations in the time dimension. DTW has been
widely used as a distance measure for time series classification and clustering.
A variety of the DTW algorithms have been proposed for applications such as
weighted dynamic time warping [96], derivative DTW [110], multidimensional
DTW [192], DTW for pitch determination [51], scaling up DTW [109] and opti-
mised DTW [73]. However, DTW does not account for the relative importance
regarding the phase difference between a reference point and a testing point
[96]. This may lead to misclassification, especially in applications where the
shape similarity between two sequences is a major consideration for accurate
recognition [96]. All of the above mentioned algorithms have employed DTW
without using a learning algorithm. As it will be shown, combining DTW with
a learning algorithm helps to perform the classification of the sequential data
with higher accuracy and overcomes DTW problems.

Support vector machines (SVMs), on the other hand, have become a
popular approach to pattern classification since they can deliver state-of-
the-art performance on a wide variety of real-world classification problems
[172, 181, 167, 120]. Many interesting kernels have been proposed for sequen-
tial data classification using SVMs [39, 144, 126, 36]. Mutual information
kernels have been proposed for a special case of sequential string classification
[39, 169]. These kernels are able to solve classification problems in high dimen-
sional space where labelled data are sparse and unlabelled data are abundant
[169]. Context-free models or probabilistic suffix tree structures have been
employed to construct these kernels for an application of protein classification
[39]. For solving general classification problems for variable length data ob-
jects, it is very tempting to plug the sequential distance measures into SVM
kernels such as the Gaussian kernel [36].

A so-called Gaussian dynamic time warping (GDTW) kernel has been
proposed for sequential data classification with applications in online hand-
writing recognition and speech recognition [8, 175]. The kernel is defined as
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Figure 5.2: Illustration of warping path for the sequences shown in Figure
5.1 obtained using Dynamic Time Warping [182]; DTW finds the minimum
matching path by providing non-linear alignments between two sequences. As
shown, the path has not been ended at point (160, 160) since the two sequences
have two different lengths. In the path, pure vertical movements show that
one point in the first sequence is corresponding to several points in the second
sequence. Likewise, pure horizontal movements show that one point in the
second sequence is corresponding with several points in the first sequence.
Finding the correspondence between data points has made DTW capable of
comparing data objects with different lengths.
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K(x, y) = exp(−D(x,y)
σ2 ), where D(x, y) denotes the DTW distance. Authors

in [119] have shown that the GDTW is not a positive semi-definite symmet-
ric function [36] and therefore it does not satisfy the kernel characterisation
required by Mercer’s Theorem [132]. So GDTW is not a qualified kernel for
SVMs, the existence of a “Reproducing Kernel Hilbert Space” [36] is not guar-
anteed and it is no longer clear what it is that is being optimised [168]. In
the following sections it is shown that in general cases it is not clear whether
GDTW satisfies Mercer’s condition or not. Several approaches proved that
GDTW kernels are positive semi-definite under some favorable conditions and
they can be tuned effectively for speech recognition [40], but not in the general
case of sequential pattern matching.

Recently Sepp Hochreiter and Klaus Obermayer [79] have proposed a tech-
nique for the analysis of dyadic data where two sets of objects are characterised
by a matrix of numerical values that describe their mutual relationship [79].
They called their method Potential Support Vector Machines (P-SVMs). Con-
trary to standard SVM approaches, the P-SVMs lead to a sparse expansion
of the classification and regression functions in terms of the row rather than
the column objects and can handle data and kernels that are neither positive
definite nor square. Hochreiter and Obermayer have shown that the P-SVMs
often perform better than the standard approaches. This provides a good
opportunity to cope with the optimisation problem of the GDTW kernels.

In this chapter the advantages and disadvantages of several classification
methods for variable-length input series are discussed and a new method is
proposed to avoid the shortcomings of others. The feasibility of usage of the
GDTW as a Mercer kernel [132] in standard SVMs is discussed. The new
method, called GDTW-P-SVMs, utilises the GDTW kernel in P-SVMs for
the first time. It benefits from the robustness of DTW as an elastic distance
measure in finding similarities between two variable-length data sequences.
This makes it a powerful tool to classify trajectory-based data sets such as
human spatial behavioural characteristics and animal movement trajectories
for behavioural analysis, pen movement trajectories for document analysis and
any other collected data for movement-based analysis that can be represented
as sequences of time stamped locations.
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5.2 Background

5.2.1 Support Vector Machines

Suppose the space X, containing the input data, is referred to as the “input
space”, while F = {φ(x) : x ∈ X} is an inner product space (Hilbert Space)
and is called the “feature space”, where φ : X −→ F is the feature map from
X to F . A kernel function [38] is a function K : X ×X −→ R, such that for
all x, z ∈ X

K(x, z) = 〈φ(x), φ(z)〉 (5.1)

One of the most common kernel functions is the “Gaussian kernel”, which is
defined as:

K(x, z) = exp
(
−γ ||x− z||2

)
(5.2)

where γ > 0 is a user-specified shape parameter. Consider classifying a training
sample S = ((x1, y1), . . . , (xl, yl)), using the feature space implicitly defined by
the kernelK(x,y) and suppose the parameters α∗ solve the following quadratic
optimisation problem:

maximise W (α) =
∑l

i=1 αi −
1
2

∑l
j=1 yiyjαiαjK(xi,xj),

subject to
∑l

i=1 yiαi = 0,

C ≥ αi ≥ 0, i = 1, . . . , l, (5.3)

where l is the number of training samples, yi is the label for the ith training
sample and C is a real parameter, which is varied through a wide range of
values while the optimal performance is assessed using a separate validation
set by cross-validation [38]. Let f(x) =

∑l
i=1 yiα

∗
iK(xi,x) + b∗, where b∗ is

chosen so that yif(xi) = 1 for any i with C > α∗i > 0. Then the decision rule
given by sgn(f(x)) is equivalent to the hyperplane in feature space implicitly
defined by the kernel K(x, z) that solves the optimisation problem (Equation
5.3), where b∗ is chosen using the Karush-Kuhn-Tucker conditions [113].

Let X = {x1, . . . ,xn} be a finite input space with K(xi,xj) a symmetric



5.2. Background 108

function on X. Then K(xi,xj) is a “Mercer kernel” if the matrix

K = (K(xi,xj))ni,j=1 (5.4)

is positive semi-definite (PSD)2 [132, 156]. Three approaches for data classifi-
cation using SVMs have been proposed:

1. If the data matrix (Equation 5.4) is PSD, it is interpreted as a Gram
matrix and SVMs are subsequently applied [1].

2. If the data matrix is indefinite but symmetric, the matrix is projected
into a subspace spanned by the eigenvectors with positive eigenvalues
[67].

3. Another approach for dealing with indefinite data matrices involves flip-
ping the sign of negative eigenvalues [79].

All three approaches guarantee a PSD matrix on the available training set but
it may not be PSD on the new test set.

5.2.2 SVMs with GDTW Kernel

The Gaussian function with Euclidean distance measure (Equation 5.2) is
among the most commonly used kernels in SVMs. It is well-known that
the Gaussian function provides a Mercer kernel [164]. It maps n vectors
v1, v2, . . . , vn into a Hilbert space [36] where φ(v1), φ(v2), . . . , φ(vn) span an
n-dimensional subspace [164]. The Euclidean distance measure used in Equa-
tion 5.2 is able to compare two vectors with the same length only. Therefore,
the classifier that is using this kernel function is restricted to an input space
with fixed-length feature vectors. For instance, sequential data that vary in
speed or time (such as pedestrian trajectory data and human voice data with
variable recording times) cannot be directly used as the input space for this
kernel function.

2A positive semi-definite matrix is a Hermitian matrix, all of whose eigenvalues are non-
negative [129, 38].
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In order to overcome this problem, a Gaussian function can be defined with
a DTW distance measure [8, 175]:

kGDTW (xr,ys) = exp

(
−D(xr,ys)

σ2

)
(5.5)

where xr is a time series with discrete time index varying between 1 and r,
ys is a time series with discrete time index varying between 1 and s, σ is
the Gaussian kernel width, and D(xr,ys) is the DTW distance. It can be
calculated recursively as:

D(xr,ys) = ||xr − ys||p +min


D(xr−1,ys) delete,

D(xr−1,ys−1) match,

D(xr,ys−1) insert,

(5.6)

where xr ∈ Rd is the rth element (last element) of time series xr, ys ∈ Rd is
the sth element (last element) of time series ys, and ||xr − ys||p is the lp-norm
in Rd. For further information about DTW algorithms and their variations
please refer to [130, 182, 160].

5.2.3 Two-Step DTW-SVM Classifier

The effective use of SVMs in classification necessitates the appropriate choice
of a kernel. Classifying data sets that contain variable-length input series
requires the designing problem specific kernels. This involves the definition of a
similarity measure, with the condition that the kernels are PSD. An alternative
technique is discussed here, which uses a two-step architecture for classifying
the data.

In the first step of the classification technique, the data has been rep-
resented by the DTW distance measure. DTW is able to find the distance
between two input series with different lengths. In the representation each
sample is represented by its DTW distances to other data samples. This
is shown as a matrix in Figure 5.3 and we call it the DTW matrix. In
this matrix each row/column represents a transformed data sample. Since
DTW (xrii ,x

rj
j ) = DTW (xrjj ,x

ri
i ), the matrix is symmetric.
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Figure 5.3: Two-step DTW-SVM methodology for classifying two classes of
data with variable-length input series. It is used along with the pairwise clas-
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Figure 5.4: Training phase for multi-class classification problems using the
idea presented in Figure 5.3; the pairwise classification algorithm (one-vs-one)
is employed to train multi-class data, 5-fold cross validation with a leave-one-
out policy is utilised for tuning hyperparameters (C, γ and kernel parameters).

In the second step the DTW matrix is used as the input of a standard
two-class SVM classifier (as shown in Figure 5.3). It is able to distinguish
between two classes only. This technique can be used along with the pairwise
classification algorithm to classify multi-class time series.

Figure 5.4 shows different stages in the “training phase” of the multi-class
classification method using the two-step DTW-SVMs classifier and a pairwise
one-vs-one algorithm. A 5-fold cross validation technique is also employed to
“tune” the SVM hyperparameters (C, γ and kernel parameters). As shown,
after calculating the DTW distances between all samples the distances are
scaled in [0, 1] (The scaling method is described in Section 5.4, Equation 5.18).
Then pairs are created from the scaled DTW matrix and class labels that are
provided in the training set. Each pair contains two classes of data only (one-
vs-one pairwise algorithm). Afterwards, the 5-fold cross validation technique
is utilised to tune the hyperparameters. As a result of tuning, one SVM model
for each pair of classes will be constructed.
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Figure 5.5: Testing phase for trained models obtained using presented architec-
ture in Figure 5.4; a pairwise classification algorithm (one-vs-one) is employed
to label multi-class data.

The “testing phase” in this classification technique, as shown in Figure 5.5,
is different from the testing phase in commonly used classification methods.
In the training phase all training data are used to obtain the DTW matrix
and represent the input space for the SVM classifier. In the testing phase each
testing object has to be mapped with the same representation as was used in
the training phase. This means to classify a test sample, the distances between
the test sample and all samples in the training set have to be calculated.
The matrix that contains these distances is called the “test DTW matrix” in
Figure 5.5. The ith row of the matrix represents the DTW distances between
the ith test sample and all samples in the training set.

This technique overcomes the problem of classifying data samples with
different lengths using SVMs, and it enjoys the benefits of using the DTW
distance measure without suffering from employing non-PSD kernels in SVMs.
However, in the testing phase, to calculate the test DTW matrix (as shown
in Figure 5.5) the training set as well as the trained models are required for
classification. This makes it difficult to distribute trained data, either because
they are too big to distribute or in some cases the training data sets are not
allowed to be accessed by a testing party. Also, the DTW distances between
each test sample and all training samples need to be calculated, which obviously
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slows down the testing process. Therefore the method is not technically feasible
for applications that have a big training set or require real-time classification.

5.3 Proposal of GDTW-P-SVMs

5.3.1 Positive Semi-Definiteness and the GDTW Kernel

As noted by [8] and supported by the proof provided by [119], kGDTW cannot
be a PSD function in general. To use kGDTW (xr,ys) as a kernel function
with any given data set, the obtained kernel matrix (Equation 5.7) using the
corresponding kernel must satisfy Mercer’s condition.

KGDTW =

[
exp

(
−
D(xrii ,x

rj
j )

σ2

)]n
i,j=1

(5.7)

where n is the number of samples in the training set, and xrii is the ith time
series in the training set with a discrete time index varying between 1 and ri.

pnK(λ) = det(KGDTW − λIn) (5.8)

Equation 5.8 shows the “characteristic polynomial” of KGDTW for n sam-
ples, where In is the identity matrix of the same dimension as KGDTW ,
λ ∈ {λ1, λ2, . . . , λn} is the root of pnK(λ) and λ1, λ2, . . . , λn are the eigen-
values for the kernel matrix (KGDTW ). In Equation 5.8 all eigenvalues should
be non-negative so that kGDTW (x,y) could be considered as a Mercer kernel
[132]. We know that pnK(λ) is a polynomial of degree n, so there exist exactly
n eigenvalues. On the other hand, since

D(xrii ,x
rj
j ) = D(xrjj ,x

ri
i ) (5.9)

then KGDTW is a symmetric matrix and therefore all the eigenvalues are real.
For n = 3 in Equation 5.8 the sign of roots (eigenvalues) could be calculated
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as follows:

pn=3
K (λ) = λ3 − 3λ2

−λ [exp(2cD(xr11 ,x
r2
2 )) + exp(2cD(xr11 ,x

r3
3 )) + exp(2cD(xr22 ,x

r3
3 ))− 3]

+[exp(2cD(xr11 ,x
r2
2 )) + exp(2cD(xr11 ,x

r3
3 )) + exp(2cD(xr22 ,x

r3
3 ))

−2 exp(2cD(xr11 ,x
r2
2 )) exp(2cD(xr11 ,x

r3
3 )) exp(2cD(xr22 ,x

r3
3 ))− 1] = 0

(5.10)
where c = − 1

σ2 . For simplicity we assume:

l = exp[2cD(xr11 ,x
r2
2 )] + exp[2cD(xr11 ,x

r3
3 )] + exp[2cD(xr22 ,x

r3
3 )]− 3 (5.11)

and

m = exp[2cD(xr11 ,x
r2
2 )] + exp[2cD(xr11 ,x

r3
3 )] + exp[2cD(xr22 ,x

r3
3 )]

−2 exp[2cD(xr11 ,x
r2
2 )] exp[2cD(xr11 ,x

r3
3 )] exp[2cD(xr22 ,x

r3
3 )]− 1 (5.12)

then we will have

pn=3
K (λ) = λ3 − 3λ2 − lλ+m = 0. (5.13)

We know that D(xrii ,x
rj
j ) ≥ 0 then 0 < exp[2cD(xrii ,x

rj
j )] ≤ 1, therefore

−3 < l ≤ 0 and −1 < m < 1. Based on Descarte’s sign rule [3], Table 5.1
clarifies the sign of eigenvalues for all possible m and l. In Table 5.1, note that
zero roots (λ = 0) are not included in maximum number of positive eigenvalues.
Zero roots are only possible when m = 0. Also, if l = 0 then m = 0 (because
in this case exp[2cD(xrii ,x

rj
j )] has to be equal to its maximum value, which is

1).
Figure 5.6 shows eigenvalues relating to l and m, which are obtained from

Equations 5.11 and 5.12 respectively. This figure, as well as Table 5.1, confirms
that the existence of negative eigenvalues (red dots in Figure 5.6) depends on
DTW distances between data samples. Although Table 5.1 and Figure 5.6
show that Equation 5.13 has negative roots only when m > 0 and l < 0, we
cannot expand this idea for the general case of n.

Therefore positive semi-definiteness of the kGDTW depends on the DTW
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Figure 5.6: Positive (blue dots) and negative (red dots) eigenvalues(λ) obtained
from Equations 5.11, 5.12 and 5.13 where 0 ≤ D(xrjj ,x

ri
i ) < 100; i, j = 1, 2, 3.

Red dots show where the GDTW kernel is not positive semi-definite and blue
dots show where the GTDW kernel is positive semi-definite.
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Table 5.1: Sign of eigenvalues according to Equation 5.13, maximum number
of negative and positive eigenvalues are shown for each set of conditions. Only
when l < 0 and m > 0 may negative eigenvalues exist. Zero roots (λ = 0) are
only possible when m = 0.

l m
maximum maximum zero
#positive #negative roots
eigenvalues eigenvalues possibility

< 0 < 0 3 0 No
< 0 > 0 2 1 No
< 0 = 0 2 0 Yes
= 0 = 0 1 0 Yes

distances between the data objects and we cannot say that the GDTW function
always satisfies or always does not satisfy Mercer’s condition. The trainability
of SVMs with the GDTW kernel is compared with the proposed method in
Section 5.4.1.1.

Using the GDTW kernel in SVMs may result in a non-PSD kernel and in
this case the existence of a Reproducing Kernel Hilbert Space is not guaranteed
[168]. Another approach is to apply a transformation to the kernel matrix and
make it PSD. This approach can lead to kernel matrices with large diagonal
entries, resulting in overfitting [188]. Also it is not clear how this approach can
handle new data objects in the test set [69]. As discussed in [69], fixing the
diagonal values by subtracting the smallest eigenvalue from the diagonal does
not increase the accuracy of the resulting classifier.

5.3.2 Combination of GDTW and P-SVMs

Employing DTW distance as a distance measure in Gaussian Kernel Func-
tions and obtaining a new kernel function (Equation 5.14) called GDTW, is a
tempting solution to waive SVM restriction on length of feature vectors. As
previously discussed (in Subsection 5.3.1), it is not clear under what conditions
the GDTW function (Equation 5.14) satisfies Mercer’s conditions and could
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be considered as a valid kernel function for SVMs.

kGDTW (x,y) = exp

(
−D(x,y)

σ2

)
(5.14)

On the other hand, the discussed two-step DTW-SVMs classification method
has two main shortcomings: i) It needs the training data sets as well as the
trained model when testing a new sample, and ii) while online testing is a
common requirement of many time series classification problems such as speech
recognition and handwriting recognition, testing against a large training data
set using the two-step DTW-SVMs classifier (as shown in Figure 5.5) could be
a very slow process.

To overcome the shortcomings of the two-step DTW-SVMs, and the short-
comings of using a non-PSD kernel in conventional SVMs, and being able to
analyse data sets with different lengths in input series, we propose a new ap-
proach called GDTW-P-SVMs. It elaborates on P-SVM kernel functions, by
utilising the DTW algorithm to provide an elastic distance measure for the
kernel function. It utilises GDTW (Equation 5.14) as the kernel function in
potential support vector machines (P-SVMs). In contrast to DTW-SVMs,
which calculate the similarities between input series to obtain fixed-length fea-
ture vectors (the DTW matrix in Figure 5.3), the GDTW-P-SVM technique
employs DTW in its kernel to waive the SVM requirement on fixed-length
feature vectors.

Potential support vector machines (P-SVMs) [79] have been proposed by
Hochreiter and Obermayer to analyse dyadic data where two sets of objects
(row and column objects) are characterised by a matrix of numerical values.
It is a maximum margin method for construction of classifiers and regression
functions for the column objects in a data matrix. The P-SVM optimisation
problem can be summarised as follows:

minimise 1
2‖X

T
φω‖2 + C1T (ξ+ + ξ−)

subject to KT (XT
φω − y) + ξ+ ≥ 0

KT (XT
φω − y)− ξ− ≥ 0

0 ≤ ξ+, ξ− (5.15)
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where ω is a weight vector and ξ+ and ξ− are slack variables used for the
regularisation scheme proposed in [79]. A large value for the slack variables
indicates that the particular object only weakly influences the direction of the
classification boundary. In Equation 6.3, C is a constant value. If the noise is
large, the value of C must be small to remove the corresponding constraints via
the slack variables ξ. After employing Lagrangian optimisation the following
dual optimisation problem will be derived:

minimise 1
2α

TKTKα− yTKα

subject to −C1 ≤ α ≤ C1, (5.16)

where α is the vector of Lagrange multipliers. Equation 5.16 depends on the
data via the kernel or data matrix K only. One of the most crucial properties
of the P-SVM procedure is that the dual optimisation problem depends on
only K via KTK. Therefore, K is not required to be positive semi-definite or
square. This allows the construction of SVM-based classifiers for matricesK of
general shape that include indefinite kernels. The offset b∗ of the classification
function f(x) =

∑l
i=1 yiαiK(xi,x) + b∗ is given by [79]:

b∗ =
1

l

l∑
i=1

yi. (5.17)

The GDTW-P-SVMs method not only has the advantage of employing
the DTW distance measure for comparing input series with different lengths
but also overcomes the shortcomings of the two-step DTW-SVMs. As the
testing phase for this approach is performed using only the created models,
the training set is not required when testing a new data sample. This makes it
convenient to distribute the trained data, which are essentially the models. On
the other hand, in the testing process it is not required to compare each test
sample against the entire training set. This makes it an appropriate method
for problems that demand real-time classification results.
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5.4 Experimental Results

To practically evaluate the effectiveness of the two-step DTW-SVMs classifier
and GDTW-P-SVMs, a set of standard benchmark classification tasks is used
for time series. The experiments used all time series available at the UCR
repository [107], the character trajectory data set available at UCI machine
learning repository [53] and GeoLife human trajectory data sets [209].

One common method to evaluate classification techniques is comparing
results obtained from n-fold cross-validation optimisation. The optimisation
involves tuning the hyperparameters (C, γ and kernel parameters) to minimise
the error rate. We note that to obtain comparable results, whenever a tuning
takes place, every adjustment should be considered as a separate independent
experiment. The recommended procedure is to use “cross validation tuning”
entirely within the training set and use a separate test set for evaluating the
classification method [162]. When doing comparative evaluations, everything
that is done to modify or prepare the algorithms must be done in advance of
seeing the test data [162, 115]. In the experiments, to follow this recommenda-
tion a training subset and a testing subset are either pre-defined by the data
set providers or a separate tuning set is defined to tune the hyperparameters.

A pairwise strategy with a one-vs-one policy is utilised for multi-class prob-
lems. For model selection, a five-fold cross-validation with a leave-one-out pol-
icy is performed on each pair of data. In the n-fold cross-validation technique,
n = 5 and n = 10 are the two most commonly used values for number of folds.
In the experiments some data sets have only a few samples of some classes. In
these cases the number of samples in a pair can be less than the number of
folds and therefore some folds may remain empty. To reduce the frequency of
occurrence of empty folds n = 5 is used as the number of folds. If the num-
ber of samples in a pair is still less than the number of folds, then a sample
repetition technique is used to ensure there is at least one sample in each fold.
In essence, the sample repetition technique repeats the existing samples with
consideration of the balance of data for both classes in the pair.

A shuffling technique is also applied to the data prior to fold generation.
The technique helps to maintain a balance of the number of classes in each
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Figure 5.7: Exponential increment of C values for p = 100 and Cmax = 2000;
The best C values (Equation 5.3) are selected for each fold among a predefined
set of values {C1, C2, . . . Cp} where Ci = exp(i× ln(Cmax)

p ); i = 0, 1, . . . , p.

fold. The accuracy of a model cannot be judged using an unbalanced testing
set where the majority of its data belong to one class only. The shuffling
technique runs over the data a hundred times to find the folds with balanced
training and testing sets.

To perform data classification the LIBSVM [28] and the P-SVM [79] tool-
boxes are used for implementing the two-step DTW-SVMs and the GDTW-P-
SVMs respectively. To ensure a fair comparison, the hyperparameter selection
procedure was equal in all methods. Best values are selected from a generated
hyperparameter set to minimise the error rate in the training phase. More
precisely, the settings for the GDTW-P-SVMs and the two-step DTW-SVMs
are listed below:

• two-step DTW-SVMs: The Gaussian kernel (Equation 5.2) is used as the
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kernel function for SVM learning. The best C values (Equation 5.3) are
selected for each fold among a predefined set of values, {C1, C2, . . . Cpc}.
A logarithmic distribution is used for C with higher density close to
zero. The values in the set are obtained using Ci = exp(i× ln(Cmax)

pc
); i =

0, 1, . . . , pc, where pc and Cmax are two constant values that indicate
number of values and the maximum value for C respectively (Figure
5.7). The same strategy has been employed for selecting the best γ
among γi = exp[ln(γmin) + i× ( ln(γmax)−ln(γmin)pγ

)]; i = 0, 1, . . . , pγ , where
pγ is the number of values for γ, γmin and γmax are the minimum and
maximum values for γ, respectively (Figure 5.8).

• GDTW-P-SVMs: DTW Gaussian function is used (Equation 5.14) as the
kernel function for P-SVM classification. C (see Equation 5.16) and γ

(γ = 1/σ2 in Equation 5.14) values are selected using the same methods
as described for the DTW-SVMs.

All possible permutations of hyperparameters are used to find the minimum
classification error rate for k folds. Then for each pair we have s ≥ k selected
sets (some sets result in the same minimum error rate for the same fold).
Among the s sets, the most frequent set with the lowest error rate is determined
as the best hyperparameter set for that particular pair. If there is more than
one set with that feature then the set that contains the biggest value for C will
be selected as the best set.

Testing a new data sample is performed against all trained models (one for
each pair). A predicted label with the highest number of votes will be selected
as the class of the new data sample. If the highest number of votes belongs to
more than one class then the same voting algorithm will be performed on the
pairs consisting of selected classes only. This routine continues until eventually
one class wins the competition. If the voting algorithm fails to find the winner,
the label with the lowest class number among selected classes will be chosen
as the predicted class for that particular data sample.

The standard DTW algorithm has quadratic time and space complexity
that limits its use to only small time series data sets. To overcome this prob-
lem, the DTW algorithm described in [161] is used. The algorithm provides
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Figure 5.8: Exponential increment of γ values for p = 20, γmin = 0.01 and
γmax = 0.5; The best γ values (Equation 5.2 and γ = 1/σ2 in Equation 6.1) are
selected for each fold among a predefined set of values {γ1, γ2, . . . γp}, where
γi = exp[ln(γmin) + i× ( ln(γmax)−ln(γmin)p )]; i = 0, 1, . . . , p.
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the DTW alignments with linear time and space complexity. It uses a mul-
tilevel approach that recursively projects a solution from a coarser resolution
and refines the projected solution. This makes it possible for the proposed
classification technique, GDTW-P-SVMs, to have the same complexity as the
P-SVMs with Euclidean distance. As discussed in [20], regardless of the exact
algorithm used, the computational cost of solving the SVM Quadratic Prob-
lem grows at least like n2 when C is small and n3 when C gets large. It
depends on the number of samples (n), the number of support vectors, and
the hyperparameters (C and γ).

Large margin classifiers are known to be sensitive to data normalisation.
The accuracy of a SVM can be severely degraded if the data is not normalised
[68]. The main advantage of normalising is to avoid attributes in greater nu-
meric ranges dominating those in smaller numeric ranges. Another advantage
is to avoid numerical difficulties during the calculation. Because kernel values
usually depend on the inner products of feature vectors, e.g. the linear ker-
nel and the polynomial kernel, large attribute values might cause numerical
problems [28]. The normalisation could be performed on input space (on the
data sets) and feature space (in the kernel function). The RBF-based kernels
normalise the feature space themselves [2]. This does not mean that input
space normalisation is not required [68]. In the selected data sets for this ex-
periment, there exist many features. Each of these features may be measured
in a different scale and has a different range of possible values. In this case it is
beneficial to scale all the features to a common range in each data set [2]. This
method is also known as standardisation. For scaling the data, a “min-max”
method is employed to scale the training data to the common range, [0, 1]:

x̂ =
x− xmin

xmax − xmin
, (5.18)

where xmin and xmax are minimum and maximum values of the scaling data
set, x̂ is the scaled data, and x is the raw data sample. As previously discussed
in section 5.2.3, the DTW-SVMs classification technique requires the training
set as well as the trained models to test data samples. Maximum and minimum
values of the training set are used to scale the test set to the desired range.
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The proposed classification method is examined with two types of data
sets:

1. Fixed-length feature vectors: Data sets where the data have a certain
number of features and the values of all features for all samples are pro-
vided.

2. Variable-length input series: Data sets where the data do not have a
fixed number features, or values of some features for some samples are
not available. Trajectory-based data sets are one of the most common
examples of this type, such as character trajectory data sets and human
trajectory data sets.

The next two subsections discuss classification results obtained using both
types of data.

5.4.1 Fixed-Length Feature Vector Classification

This section describes experiments that compare various classification tech-
niques using data sets with fixed-length feature vectors. The classification
performance of GDTW-P-SVMs is compared with two groups of classifiers.
The first group contains classifiers that use the first nearest neighbour (1NN)
technique along with a selection of common distance measures to classify UCR
data sets. In the second group we compare the proposed method with kernel-
based classifiers that employ DTW as a distance measure in their kernel. The
outcome is a pairwise comparison of these classifiers with respect to their clas-
sification accuracy.

5.4.1.1 UCR data sets

In this section the UCR time series data sets [107] are used to benchmark the
proposed methods and compare them with some other previously presented
classification techniques. An overview of the UCR data set and its properties
is given in Table 5.2. The benchmark represents a wide variety of practical
classification problems including speech recognition, face recognition, motion
tracking, data analysis, and electrocardiography data classification. The length
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of time series varies from 60 to 637 time steps and the data sets contain 24,009
time series in total. Each of the 20 data sets comes with a training set and a
testing set.

Table 5.3 shows the results obtained for different classification methods.
The methods, which are discussed in this table, employed the 1-nearest neigh-
bor classifier with a distance measure. The 1-nearest neighbor classifier is
used because the 1-nearest neighbor classifier with DTW showed very com-
petitive performance and it has been widely used for time series classification
[96]. In the table, for space concerns, the acronyms of the methods’ names
are used: 1NN ED (first nearest neighbour with Euclidean Distance), DTW
(classic Dynamic Time Warping [182]), ODTW (Optimised Dynamic Time
Warping [153]), LCSS (Longest Common Sub-sequence [34]) and ERP (Edit
distance with Real Penalty [29]).

Figure 5.9 compares the proposed classification technique with the other
methods. Red dots and blue dots show error rates for GDTW-P-SVMs and
DTW-SVMs respectively for each data set. The black line in each diagram is
representative of the case where both methods undergoing comparison would
have equal error rates. More blue/red dots above the black line means the
DTW-SVMs/GDTW-P-SVMs have lower classification error rates than the
comparing method. As shown the GDTW-P-SVMs (red dots) have lower error
rates in most cases even when comparing with powerful distance measures
such as LCSS and ERP (last two diagrams in Figure 5.9). The DTW-SVMs
technique also has a lower error rate than most other techniques, but it always
has a higher error rate than GDTW-P-SVMs.

Figure 5.10 shows Receiver Operating Characteristic (ROC) curves of the
GDTW-P-SVMs and SVMs with ED-Gaussian Kernel classifiers for the five
data sets from the UCR repository that have two classes (binary classification
problems) [50]. The False Positive Rate (FPR) is defined as the fraction of
the false negatives out of total negatives, and the True Positive Rate (TPR)
is defined as the fraction of the true positives out of total positives. The
Area Under Curve (AUC) when using GDTW-P-SVMs for ECG, Gun-Point,
Wafer, Coffee, and Yoga data sets are 0.825, 0.985, 0.916, 1.000, and 0.894
respectively and when using SVMs they are 0.891, 0.837, 0.688, 0.713, and
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Table 5.2: UCR time series data set properties [107]

Database
Name

Number Size of Size of
of training testing Length

classes set set
Synthetic 6 300 300 60control
Gun-Point 2 50 150 150
CBF 3 30 900 128
Face(all) 14 560 1690 131
OSU Leaf 6 200 242 427
Swedish 15 500 625 128Leaf
50 Words 50 450 455 270
Trace 4 100 100 275
Two 4 1000 4000 128Patterns
Wafer 2 1000 6174 152
Face(four) 4 24 88 350
Lightning-2 2 60 61 637
Lightning-7 7 70 73 319
ECG 2 100 100 96
Adiac 37 390 391 176
Yoga 2 300 3000 426
Fish 7 175 175 463
Beef 5 30 30 470
Coffee 2 28 28 286
Olive oil 4 30 30 570
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Table 5.3: UCR time series classification error rates, 1NN: first nearest neigh-
bour, ED: Euclidean distance, ODTW: optimised DTW, LCSS: longest com-
mon sub-sequence, ERP: edit distance with real penalty. GDTW-P-SVMs
show better results for automatic time series classification with fixed-length
feature vectors. Best result(s), i.e. lowest error rate, for each data set are
shown in bold.

Database
Name

1NN 1NN 1NN 1NN 1NN DTW GDTW
ED ODTW DTW LCSS EPR SVM P-SVM

Synthetic 0.12 0.017 0.007 0.047 0.036 0.007 0.000control
Gun-Point 0.087 0.087 0.093 0.013 0.040 0.200 0.000
CBF 0.148 0.004 0.003 0.009 0.003 0.000 0.000
Face (all) 0.286 0.192 0.192 0.201 0.201 0.256 0.102
OSU Leaf 0.483 0.384 0.409 0.202 0.397 0.355 0.330
Swedish 0.213 0.157 0.210 0.117 0.120 0.184 0.094Leaf
50 Words 0.369 0.242 0.310 0.213 0.281 0.264 0.222
Trace 0.24 0.01 0.000 0.20 0.170 0.000 0.000
Two 0.090 0.0015 0.000 0.000 0.000 0.000 0.000Patterns
Wafer 0.005 0.005 0.020 0.000 0.009 0.010 0.000
Face (four) 0.216 0.114 0.170 0.068 0.102 0.079 0.023
Lightning-2 0.246 0.131 0.131 0.180 0.148 0.197 0.164
Lightning-7 0.425 0.288 0.274 0.452 0.301 0.370 0.260
ECG 0.120 0.120 0.230 0.100 0.130 0.150 0.100
Adiac 0.389 0.391 0.396 0.452 0.378 0.371 0.289
Yoga 0.170 0.155 0.164 0.137 0.147 0.151 0.147
Fish 0.217 0.233 0.267 0.091 0.120 0.206 0.194
Beef 0.467 0.467 0.500 0.533 0.500 0.500 0.500
Coffee 0.250 0.179 0.179 0.214 0.250 0.179 0.000
Olive oil 0.133 0.167 0.133 0.800 0.167 0.133 0.133
Average Rank 4.650 3.000 3.650 2.800 3.000 3.100 1.400
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0.5683. The ROC curves show that GTDW-P-SVMs have higher accuracy in
classifying positive and negative samples than SVMs with Gaussian kernel.
They also support the classification error rates presented in Table 5.3.

As seen in Figure 5.9 and the last column of Table 5.3, GDTW-P-SVMs
clearly outperform other classification methods; in most cases the accuracy
of GDTW-P-SVMs is higher than that of others. The experimental results
for fixed-length feature vectors indicate that the proposed method (GDTW-P-
SVMs) is promising for automatic time series classifications with fixed-length
feature vectors.

Table 5.4 compares classification results obtained using kernel-based classi-
fication techniques that use DTW as the distance measure in their kernel func-
tion. In the table, for space concerns, the acronyms of the methods’ names are
used: ppfSVM-NDTW (pairwise proximity function SVM [66] with negated
DTW kernel [69]), ppfSVM-GDTW (pairwise proximity function SVM with
GDTW kernel), SVM-NDTW (conventional SVM with negated DTW kernel),
SVM-GDTW (conventional SVM with GDTW kernel).

Figure 5.11 compares the proposed classification technique with other
methods, which were discussed in Table 5.4. In this figure, the same rep-
resentation as in Figure 5.9 is used. As shown the GDTW-P-SVMs (red dots)
have lower error rates in all cases even when compared with pairwise proximity
function SVM with GDTW and NDTW kernels (last two diagrams in Figure
5.9).

The last rows of Table 5.3 and Table 5.4 show the “average rank” of each
classifier using the Friedman test [54]. The average rank is calculated for
each group of classifiers separately. To obtain the average rank initially the
classifiers were ranked on each data set separately. Then for each data set
the classifier with the lowest error rate (highest performance) is assigned rank
1, the second best rank 2, and so on. In the case of ties, average ranks are
assigned for that data set. Then the ranks are averaged over all data sets in
each group.

Critical value for the two-tailed Bonferroni-Dunn test [46] with α = 0.05

3Closer the value of AUC to 1, higher the accuracy of classification.
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Figure 5.9: Comparison of time series classification methods (presentation
method adopted from [130]). x−axes represent error rates for DTW-SVM and
GDTW-P-SVMs with blue and red dots respectively. y−axes show error rates
for the other five classification methods, which were compared in Table 5.3.
Black lines represent f(x) = x. More blue/red dots above the black line means
that the DTW-SVM/GDTW-P-SVMs have lower classification error rates than
the comparing method. As shown the GDTW-P-SVMs (red dots) have lower
error rates in most cases even when compared with powerful distance measures
such as LCSS and ERP (last two diagrams in the figure).
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Figure 5.10: Comparison of Receiver Operating Characteristic (ROC) curves
for SVMs with Gaussian Kernel and GDTW-P-SVMs for five UCR data sets
with two classes; False Positive Rate (FPR) is defined as the fraction of the
false negatives out of total negatives. True Positive Rate (TPR) is defined as
the fraction of the true positives out of total positives. The Area Under Curve
(AUC) when using GDTW-P-SVMs for ECG, Gun-Point, Wafer, Coffee, and
Yoga data sets are 0.825, 0.985, 0.916, 1.000, and 0.894, respectively, and when
using SVM they are 0.891, 0.837, 0.688, 0.713, and 0.568 (the closer the value
of the AUC is to 1, the higher the accuracy of classification).
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Table 5.4: UCR time series classification error rates using DTW-based kernel
function classifiers. ppfSVM/NDTW: pairwise proximity function SVM with
negated DTW kernel, ppfSVM/GDTW: pairwise proximity function SVM with
GDTW kernel, SVM/NDTW: conventional SVM with negated DTW kernel,
SVM/GDTW: conventional SVM with GDTW kernel. GDTW-P-SVMs show
promising results for automatic time series classification with fixed-length fea-
ture vectors. Best result(s) for each data set is shown in bold. The classifiers
were ranked on each data set according to their performance and the ranks
averaged over all data sets (lower rank indicates better performance.)

Database
Name

ppfSVM ppfSVM SVM SVM DTW GDTW
NDTW GDTW NDTW GDTW SVM P-SVM

Synthetic 0.013 0.013 0.013 0.023 0.007 0.000control
Gun-Point 0.047 0.140 0.460 0.127 0.200 0.000
CBF 0.003 0.001 0.010 0.046 0.000 0.000
Face(all) 0.237 0.226 0.170 0.265 0.256 0.102
OSU Leaf 0.405 0.355 0.706 0.401 0.355 0.330
Swedish 0.147 0.155 0.363 0.382 0.184 0.094Leaf
Trace 0.000 0.000 0.000 0.000 0.000 0.000
Two 0.000 0.001 0.007 0.000 0.000 0.000Patterns
Wafer 0.010 0.015 0.181 0.034 0.010 0.000
Face(four) 0.148 0.114 0.102 0.114 0.079 0.023
Lightning-2 0.328 0.316 0.492 0.115 0.197 0.164
Lightning-7 0.301 0.315 0.219 0.301 0.370 0.260
ECG 0.160 0.220 0.440 0.170 0.150 0.100
Adiac 0.325 0.343 0.512 0.560 0.371 0.289
Yoga 0.227 0.177 0.534 0.219 0.151 0.147
Fish 0.189 0.240 0.240 0.297 0.206 0.194
Beef 0.567 0.533 0.633 0.600 0.500 0.500
Coffee 0.107 0.179 0.500 0.179 0.179 0.000
Olive oil 0.167 0.267 0.133 0.267 0.133 0.133
Average rank 3.421 3.868 4.737 4.500 3.052 1.421
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Figure 5.11: Comparison of time series classification methods (presentation
method adopted from [130]). x − axes represent error rates for DTW-SVM
and GDTW-P-SVMs with blue and red dots respectively. y− axes show error
rates for the other four classification methods, which were compared in Table
5.4. Black lines represent f(x) = x. More blue/red dots above the black line
means that the DTW-SVM/GDTW-P-SVMs have lower classification error
rates than the comparing method. As shown the GDTW-P-SVMs (red dots)
have lower error rates in most cases even when compared with ppfSVM-NDTW
and ppfSVM-GDTW (the first two diagrams in the figure).
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for Table 5.3 is qα = 2.638. Critical difference (CD)4 for this table is obtained
as:

CD = qα

√
k(k + 1)

6N
= 1.8021 (5.19)

Where k is the number of classification techniques and N is the number of
data sets. Critical value for the two-tailed Bonferroni-Dunn test with α = 0.05

for Table 5.4 is qα = 2.576. Critical difference (CD) is obtained as:

CD = qα

√
k(k + 1)

6N
= 1.5636 (5.20)

A pairwise comparison of the average rank of classifiers and the obtained
critical value for Table 5.3 and Table 5.4 using the Bonferroni-Dunn test are
presented in Table 5.5 and Table 5.6, respectively. Bold values in Table 5.5
and 5.6 show that the corresponding classifier on the left performs significantly
better than the corresponding classifier on top. The values in these two tables
are obtained by subtracting the average ranks of corresponding classifiers. If
the value is more than the critical difference then the difference between the
compared classifiers is significant [42].

The differences between the rank of GDTW-P-SVMs and the ranks of other
classification methods in the first group of classifiers are always greater than
the CD (obtained in Equation 5.19). Therefore GDTW-P-SVMs perform sig-
nificantly better than the other classification methods that are discussed in
Table 5.3. Although the difference between GDTW-P-SVMs and 1NN-LCSS
is just above the CD, GDTW-P-SVMs still have statistically significantly bet-
ter performance. In the second group of compared classifiers, the rank of
GDTW-P-SVMs showed a greater difference compared to others. As shown in
Table 5.6, the differences between the rank of GDTW-P-SVMs and the rank
of other classification methods are always greater than the CD obtained in
Equation 5.20. Therefore GDTW-P-SVMs perform significantly better than
other classification methods that are shown in Table 5.4.

We have not used the ANOVA [52] to evaluate the proposed classifcation
4The performance of two classifiers is significantly different if the corresponding average

ranks differ by at least the critical difference [42].
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Table 5.5: A pairwise comparison of the average rank of classifiers discussed
in Table 5.3 using Bonferroni-Dunn test. The classifiers employed 1-NN with
a selection of common measure distances. Bold values in the table show that
the corresponding classifier on the left performs significantly better than the
corresponding classifier on top. The CD = 1.802 for this group of classifiers is
obtained using Equation 5.19.

Classifiers 1NN 1NN 1NN 1NN 1NN DTW GDTW
ED ODTW DTW LCSS EPR SVM P-SVM

1NN N/A -1.75 -1.225 -2 -1.65 -1.625 -3.825NDTW
1NN 1.75 N/A 0.525 -0.25 0.1 0.125 -2.075ODTW
1NN 1.225 -0.525 N/A -0.775 -0.425 -0.4 -2.6DTW
1NN 2 0.25 0.775 N/A 0.35 0.375 -1.825LCSS
1NN 1.65 -0.1 0.425 -0.35 N/A 0.025 -2.175EPR
DTW 1.625 -0.125 0.4 -0.375 -0.025 N/A -2.2SVM
GDTW 3.825 2.075 2.6 1.825 2.175 2.2 N/AP-SVM
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Table 5.6: A pairwise comparison of the average rank of classifiers with DTW-
based kernel (discussed in Table 5.4) using Bonferroni-Dunn test. Bold values
in the table show that the corresponding classifier on the left performs signif-
icantly better than the corresponding classifier on top. The CD = 1.5636 for
this group of classifiers is obtained using Equation 5.20.

Classifiers ppfSVM ppfSVM SVM SVM DTW GDTW
NDTW GDTW NDTW GDTW SVM P-SVM

ppfSVM N/A 0.447 1.316 1.079 -0.368 -2NDTW
ppdfSVM -0.447 N/A 0.868 0.631 -0.816 2.447GDTW
SVM -1.316 -0.868 N/A -0.237 -1.684 -3.316NDTW
SVM -1.079 -0.631 0.237 N/A -1.447 -3.079GDTW
DTW 0.368 0.816 1.684 1.447 N/A -1.632SVM
GDTW 2 2.447 3.316 3.079 1.632 N/AP-SVM
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technique because:

1. ANOVA assumes that the classification error rates (performance) are
drawn from a normal distribution, which is not always the case in general.

2. ANOVA requires that random variables have equal variance. Neither
learning algorithms nor data sets can satisfy this condition [42].

In the next two subsections the proposed classification methods are tested
against two trajectory-based data sets with variable-length input series.

5.4.2 Variable-Length Input Series Classification

The comprehension of phenomena related to movement – not only of people
and vehicles but also of animals and other moving objects – has always been a
key issue in many areas of scientific investigation and social analysis. Collected
data for movement based analysis are called trajectory data and it can be rep-
resented as sequences of time stamped locations. Trajectory data are normally
obtained from location-aware devices that capture the position of an object
at a specific time interval. Since object movements occur at different speeds
the trajectory data are variable-length input series, which makes them suitable
data sets for the GDTW-P-SVMs. In this section the classification results for
the character [53] and human [208] trajectory data sets are presented.

5.4.2.1 Character trajectory data set

The character trajectory data set consists of labelled samples of pen tip trajec-
tories recorded whilst writing individual characters. All samples are from the
same writer, for the purposes of primitive extraction. Only characters with a
single pen-down segment were considered. The data consist of 2858 character
samples with different lengths. Each sample is a 3-dimensional velocity tra-
jectory (x, y, and pen tip force). The data has been numerically differentiated
and Gaussian smoothed, with a sigma value of 2 [53, 171]. The classification
task is to recognise characters in the data set using trained models.



5.4. Experimental Results 137

Table 5.7 represents the classification error rates resulting from the ex-
periments. Three data representations are used for character classification in
[127]:

1. Likelihood : Employs the label information that is available for the objects
in the training data and represents the data using maximum likelihood
[127].

2. Fisher kernel : The Fisher kernel is defined as the inner product of the
directions of gradient ascent, i.e., the inner product of the natural gra-
dients. It simply uses the gradients as features, without any further
rescalings or normalisations [171].

3. Fisher Kernel learning (FKL): Trains the model in such a way that
objects with the same class induce gradients that are similar, whereas
objects with different classes induce log-likelihood gradients that are dis-
similar [127].

In the proposed classification method, a simple data projection for repre-
senting the data is used. It projects 3D trajectory data (2D coordinates and
pen force value) into 1D variable-length sequential data samples. As seen in
Table 5.7 the proposed method has lower error rates compared to the other
methods.

5.4.2.2 Human Trajectory Data Sets

The rise of GPS and broadband-speed wireless devices has led to tremendous
excitement about a range of applications broadly characterized as “location
based services”. These applications will provide users with information that
is targeted and personalised to their location, whether it be nearby stores,
friends, or traffic conditions, etc.

The human trajectory data set that is used in the experiments was collected
in the Geolife project by 167 users in a period of over three years. A GPS
trajectory of this data set is represented by a sequence of time-stamped points,
each of which contains the information of latitude, longitude and altitude. This
data set contains 17,355 trajectories with a total distance of about 1 million
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Table 5.7: Classification error rate (in percent) on the handwritten character
data set for four different classification methods presented in [127] as well as
our classification methods. The data set includes data object with variable-
length input series. While no feature presentation method is applied to the
data for the GDTW-P-SVM and DTW-SVM methods, they have shown the
lowest classification error rates.

Classifier Feature Representation Error rate
Bayes Likelihood 12.46

Softmax
Likelihood 8.14
Fisher 8.23

Fisher Kernel Learning 6.95

SVMs
Likelihood 7.91
Fisher 7.64

Fisher Kernel Learning 6.91
DTW-SVM – 5.450
GDTW-P-SVM – 3.010

kilometers and a total duration of 48,000+ hours. These trajectories were
recorded by different GPS loggers and GPS-phones. This data set recorded
a broad range of users’ outdoor movements, including not only life routines
like going home and going to work but also some entertainment and sports
activities, such as shopping, sightseeing, dining, hiking, and cycling [208].

The classification task defined here is based on supervised learning to au-
tomatically recognise users’ transportation modes, such as driving, walking,
taking a bus, riding a bike and traveling on a train, from raw GPS logs. 59
users have labeled their trajectories with transportation mode. The total dis-
tance and duration of transportation modes are listed in Table 5.8. Trajectories
with unknown and airplane transportation mode were excluded from the data
set.

Table 5.9 shows the classification accuracy for our approach as well as 4
other classification methods described in [207] over the training set and testing
set. In [207] two segmentation methods, by length and by duration, along with
a classifier were used to recognise the transportation mode. As the proposed
method is able to handle data samples with different lengths this step can
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Table 5.8: Total distance and duration of transportation modes in the GeoLife
data set [208].

Transportation Mode Distance (km) Duration (hours) #train #test
Walk 11,457 5,126 1,586 1,910
Bike 6,335 2,304 274 602
Bus 21,931 1,430 930 629

Car and Taxi 34,127 2,349 318 324
Train 74,449 459 412 870
Total 18,7679 12,041 3,520 4,335

be waived and the raw GPS trajectory data can be used to recognise the
transportation mode. Here again a dimension projection that projects 3D
(latitude, longitude, and altitude) into 1D variable-length sequential data is
used. As seen in Table 5.9 the accuracy of the proposed approach (GTDW-
PSVMs) is higher than the other approaches.

5.5 Discussion and Future Work

This new technique couples a SVM-based classification technique with an in-
definite kernel. The proposed coupling combination was compared with a num-
ber of other combinations that have been recently proposed (SVMs-NDTW,
SVMs-GDTW, ppfSVMs-NDTW, and ppfSVMs-GDTW). In addition to those
combinations, there exist a variety of indefinite kernels and classification tech-
niques that can be coupled, such as [144, 126]. The kernels do not satisfy
Mercer’s condition and they induce associated functional spaces called Repro-
ducing Kernel Krein Space (RKKS), which is a generalisation of Reproducing
Kernel Hilbert Space (RKHS). This chapter emphasised the importance of
such couplings by giving GDTW-P-SVMs as an example with a classification
accuracy that is significantly higher than existing methods for wide varieties of
benchmarked data sets. Experimenting with indefinite kernels and other com-
binations of kernel-based classification techniques that can handle indefinite
kernels is a possible direction of future research.
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Table 5.9: Classification accuracy for the GeoLife data set. The data set
includes data objects with variable-length input series. While no segmentation
method is applied to the data for the GDTW-P-SVM and DTW-SVMmethods,
they have shown the highest classification accuracy.

Classifier Segmentation Method Accuracy (%)

Decision Tree by length 70
by duration 75

SVMs by length 57
by duration 62

Bayes net by length 69
by duration 71

CRF by length 53
by duration 40

DTW-SVM – 79
GDTW-P-SVMs – 81

Although in the experiments the GDTW-P-SVMs were employed to solve
classification problems, the ability of GDTW-P-SVMs to handle variable length
data objects can be utilised for time series segmentation. For example, an
energy-based model for unsupervised factorisation has been employed for un-
supervised time series segmentation with fixed-length using SVMs [140, 139].
A similar approach could be applicable for segmenting time series with variable
length using GDTW-P-SVMs.

5.6 Summary

A new classification technique, GDTW-P-SVMs, was introduced for sequential
data analysis where each data object is characterised by a series of numerical
values that may have different lengths for different data objects. The new
technique is a maximum margin method for the construction of classifiers with
variable-length input series. The well-known DTW algorithm was utilised to
provide an elastic distance measure that is able to compare variable-length
input series. We compared GDTW-P-SVMs with the two-step DTW-SVM
method where training data were required in the testing phase as well as
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the trained models. Although DTW-SVMs were able to classify trajectory
data with acceptable error rates, they are not able to provide the classifica-
tion results in real-time as the testing phase for this technique is too slow
for problems that have a big training set. GDTW-P-SVMs were proposed to
overcome the shortcomings of the DTW-SVM by altering the kernel function
in P-SVM using DTW. As a result, GDTW-P-SVMs could handle data and
kernel matrices that were neither positive definite nor square, and it could also
be applied to data with variable-length input series. Benchmarks for classifi-
cation were performed with several real-world data sets from the UCR Time
Series Classification/Clustering page, the GeoLife trajectory data set, and the
character trajectory from the UCI repository. The data sets included data with
both variable and fixed-length input series. Classification error rates and ROC
curves showed that GDTW-P-SVMs can converge into the optimal separating
hyperplane with maximum margin in classification problems with fixed-length
feature vectors. We also discussed the reason why DTW was not used as a
kernel distance measure in standard SVMs. In the case of variable-length data
samples, GDTW-P-SVMs significantly outperformed other existing methods
by two main advantages: i) the proposed method had significantly lower clas-
sification error rates and ii) at the same time it waived the need for data
representation to provide fixed-length feature vectors. The second advantage
is important when the extraction of fixed-length feature vectors is not feasible
or when using fixed-length segments of data objects fails to properly describe
the relationship between data objects.

The proposed classification techniques will be used to distinguish between
different classes of behavioural data. The data include time-stamped spatial
characteristics with different lengths. The data were extracted/generated at
Wheeler Place using the proposed simulation software and pedestrian detec-
tion and tracking system. The next chapter will provide more details and
experimental results of utilising the classification technique.



Chapter 6

Spatial behaviour analysis

The content of this chapter has been presented in [90, 94, 89].
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The analysis of pedestrians’ reactions to their immediate surroundings in
indoor and outdoor areas (pedestrian spatial behaviour) is an important facet
of architectural and urban design. A simulated environment is used to gener-
ate pedestrian behavioural characteristics data. The simulation allows us to
investigate spatial visual behaviour without the difficulties of real-world be-
havioural feature extraction. While a range of simulation software has been
proposed, the spatial behaviour simulator (described in Chapter 2) is used
[92, 93]. The selected simulation software presented in [92] and [93] focuses
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on the visible static and dynamic properties of the physical environment, such
as attractors with different conspicuity areas, crowd attraction with variable
levels of attraction, and the impact of the crowd gaze vector on the behaviour
of others. While a range of names have been proposed for attractive objects
like billboards or display stands, in urban spaces the term ‘attractor’ is simply
used [93, 91, 90, 92]. The simulator is also able to model advanced spatial be-
havioural characteristics such as gaze vector, speed of movement, useful field
of view, aim of movement, goal-driven attention, interpersonal distance and
stimulus-driven attention. It provides rich information on how pedestrians
react to their surroundings and also to other pedestrians in an architectural
urban space (agent-to-agent reaction).

In addition to the simulated characteristics, real-world pedestrians’ trajec-
tories are also used for analysing spatial behaviour. The real-world trajectories
are extracted using the proposed pedestrian detection and tracking system de-
scribed in Chapter 3.

The behaviour analysis system employs a special version of support vec-
tor machines (SVMs), called GDTW-P-SVM (described in Chapter 5) that
is capable of handling input series that might have different lengths. The
analysis system learns pedestrians’ behaviour patterns based on the character-
istics observed/generated in an architectural environment. Instead of using a
fixed-length segment of a behavioural sequence, the whole sequence for each
individual pedestrian is used as an input to the classifier. This chapter presents
an analysis system that can describe the relationship between pedestrians’ be-
havioural characteristics and their flow dynamics in an urban space.

6.1 Previous Works

Analysing the impacts of attractors on pedestrian spatial behaviour will help
us to improve the planning of pedestrian environments. This type of analysis
has been conducted previously in a large number of studies such as architec-
ture, cognitive science and environmental research [189, 141, 6]. For instance,
William H. Whyte analysed the behaviour of pedestrians in complex urban
environments and concluded that pedestrians’ flow dynamics were governed
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by desires to move to some particular points in space such as urban space at-
tractors [189]. In another approach, Suzuki et al. proposed a computational
method to learn motion patterns and detect anomalies by human trajectory
analysis [176]. They employed hidden Markov models (HMMs) to model time-
series features of human positions. Using a similarity matrix of HMM mutual
distances and k-means clustering, they acquired features of human motion
patterns [176].

Some of the relevant studies used agent-based models or computer sim-
ulations [58, 6] while others dealt with real humans [207, 159]. However,
analysing the spatial behaviour of pedestrians using an automated intelligent
system has rarely been investigated. This is either because extracting such
an amount of information from observers was a time consuming process, or
an accurate classifier able to work with variable-length data objects was not
available [208, 58, 207]. There are still many open questions about how the aes-
thetics of the environment interact with human pedestrians or users of space,
and how it compares to other, more functional factors, such as path widths, the
availability of open space, and the presence of obstacles or attractive objects
[193].

The analysis of trajectory data has been conducted in many research ar-
eas including scientific investigation and social analysis. This kind of analysis
can be applied to any moving object and is not limited to pedestrian move-
ment. Collected data for movement-based analysis are called trajectory data
and they can be represented as sequences of time stamped locations. The re-
cent advances and price reduction of technologies for collecting spatial data
such as satellite images, cellular phones, sensor networks, and GPS devices
have facilitated the collection of data referenced in space and time. These
huge collections of data often contain important information that conventional
systems are unable to discover.

Trajectory based classification can be based on simple rules such as decision
making according to length of trajectory, and number of stops [45, 72, 205],
or using learning methods to exploit statistical regularities such as neural net-
works [157], Bayesian networks [208, 207, 195] and the HMM [135, 136]. Since
the object movements occur at different speeds, the trajectory data have vari-
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able lengths. Conventional classifiers such as Support Vector Machines (SVMs)
and Artificial Neural Networks (ANNs), can only classify data objects with
fixed-length feature vectors. Zheng and his team [208, 207] collected 17,355
GPS trajectories from 167 users in a period of over three years. They applied
two segmentation methods (by length and by duration) on this data set to ob-
tain fixed-length feature vectors. They employed SVMs, Bayesian Networks,
and Decision Trees to recognise users’ transportation modes. Fixed-length
segments (features) may fail to contain the information needed to properly
describe samples in the input space. Therefore, in classifying trajectory data
the accuracy of the classifier using fixed-length feature vectors is very depen-
dent on the segmentation or feature selection algorithm. Instead of using some
fixed-length segments (features) to describe the trajectory data, the proposed
analysis system considers the entire trajectory for each user as a single in-
put to the system. To achieve this, two classification methods, DTW-SVM
and GDTW-P-SVMs, which were previously described, are employed to clas-
sify trajectories [88]. The classifiers are capable of learning data entries with
different length input series.

Spatial behaviour analysis is not only limited to pedestrian movement, but
can also be expanded to other behavioural characteristics such as gaze dynam-
ics, speed of head movement and speed of pedestrian movement over time.
Especially when it comes to analysing people’s attentions in public places,
sudden changes in gaze vector are important behavioural characteristics of in-
dividuals. While attractive objects take up a significant proportion of visual
external stimuli, other people’s gaze direction could be considered as another
important category of external stimuli to attract a pedestrian’s gaze [92]. De-
tecting these sudden changes in pedestrian movement dynamics caused by en-
vironmental settings and differentiating them from normal/casual movements
can extract valuable information from trajectory data. The main focus of this
chapter is to introduce a new system that is able to recognise any abnormal-
ity in pedestrians’ trajectory-based data. The system employs an intelligent
method to distinguish the casual behaviours from the attracted ones. The clas-
sifiers model an input space using the entire sequence of data for individuals
instead of modeling a set of selected features or fixed-length segments of the
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sequence. The new aspect, which is focused on in this research, is the use of
GDTW-P-SVMs to classify simulated and real-world trajectory data sets into
several predefined behavioural categories.

6.2 Spatial Characteristics Selection

In the simulation software each agent is presented as a series of behavioural fea-
tures. The following features are used to analyse the agent’s spacial behaviour
[93]:

• (xit, yit): The location of the ith agent in a 2D plan at time t.

• (dxdy ,
dy
dt ): The speed of movement of agents at time t.

• (αt): The angle between the direction of movement (also known as speed
vector in the simulation) and the gaze vector of an agent at time t.

• (dαdt ): The derivative of the angle in respect to t.

The simulation software is capable of modelling virtual attractive objects with
a dynamic level of attraction. One example of these types of attractors is
a social group. The social group is a fundamental and universal feature of
human social life. The dynamic level of attraction reflects the impacts of the
size of the group such that larger groups are able to draw more attention than
smaller groups. The location and level of attraction of a virtual attractive
object (VAO) vary according to the location and number of agents in the
group [92]. Figure 6.1 shows how the simulation software models the impact
of crowd attraction on agents’ spatial behaviour.

An image of the agents as modelled in [93] is shown in Figure 6.2. The sim-
ulation is a multi-agent-based simulator and each agent represents pedestrian
spatial behaviour in an urban space. As agents move towards their destination
they might be distracted by several environmental features such as attrac-
tors, other pedestrians, and their purpose of walking. Therefore even agents
with the same speed and destination are likely to have trajectories with dif-
ferent lengths. Comparing these trajectories to find the differences in agents’
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Figure 6.1: Agent’s behavioural characteristics (a) with and (b) without the
impact of a virtual attractive object [92]. By considering crowd attraction in
the simulation, as the attracted crowd around an attractor grows bigger more
agents become attracted to the attractor from further distances.

behaviour is a key feature in analysing spatial behaviour. The conventional
approach to compare trajectories with different lengths is to use a window-
based method to make segments with fixed-length and then apply a distance
measure to compare the segments [208]. However, analysing only a segment of
this trajectory may not accurately reflect the agent’s behavioural differences.

6.3 Analysis System

One approach to cope with the problem of trajectories having different lengths
is to use distance measures that can compare signals with different lengths,
such as Dynamic Time Warping (DTW). DTW is a well-known elastic distance
measure that uses dynamic programming for obtaining the distance between
two sequences of sequential data [182]. Figure 6.3 shows how DTW can com-
pare two trajectories with different lengths. The trajectories are warped or
stretched non-linearly in time dimension to determine a measure of similarity
independent of non-linear variation in the time dimension. To describe the be-
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Figure 6.2: Pedestrian spatial behaviour simulation on the Wheeler Place 2D
plan [92]. Level of attractions for attractors is shown with blue circles. The
dynamic attraction level for virtual attractive objects is shown with orange
circles. The pink area in front of each agent shows the useful field of view
(UFOV) for that agent.
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Figure 6.3: Trajectory alignment using the Dynamic Time Warping (DTW)
technique; Illustration of the comparison of data points in two trajectories
produced by simulation software presented in [93, 92].

haviour that is reflected by trajectories, the distance measure can be used alone
or it could be employed in a kernel-based learning approach such as Support
Vector Machines (SVMs). The ability of DTW in comparing variable-length
input series makes it a tempting feature to use DTW in SVMs as a kernel
function. In this regard, the Gaussian Dynamic Time Warping (GDTW) ker-
nel function (as defined in Equation 6.1) has been used in SVMs as a kernel
function [8].

kGDTW (xr,ys) = exp

(
−D(xr,ys)

σ2

)
(6.1)

where xr is a time series with discrete time index varying between 1 and r,
ys is a time series with discrete time index varying between 1 and s, σ is the
kernel width, and D(xr,ys) is the DTW distance between the two time series,



6.4. Analysing Using DTW-SVM 150

x and y, and it can be calculated recursively as [130, 182, 160]:

D(xr,ys) = ||xr − ys||p +min


D(xr−1,ys) delete,

D(xr−1,ys−1) match,

D(xr,ys−1) insert,

(6.2)

where xi ∈ Rd is the ith element of time series x, yi ∈ Rd is the ith element of
time series y, and r and s are the length of x and y respectively.

Employing DTW in kernel-based learning methods is a challenging problem
since the kernel function that uses DTW as its distance measure would not
always be positive semi-definite (please refer to Chapter 5 for more details).

6.4 Analysing Using DTW-SVM

As discussed in Chapter 5, the resulting SVM classifier that uses GDTW as
the kernel function may converge to a non-optimal separating hyperplane in
comparing trajectories. To overcome this problem the DTW-SVM method is
used to classify trajectory data. The DTW-SVM is a two-step classification
method that finds the DTW distances between all trajectories in the first step
(DTW matrix) and models the distances using standard SVMs in the second
step.

The DTW matrix in DTW-SVM contains the DTW distances between all
possible pairs of trajectories. For instance, in the matrix the value stored in
the ith row and jth column is the DTW distance between the ith and jth
trajectories. Each row of this matrix is used as an input point for a standard
SVM classifier. Since the number of data points in the training set is known, the
length of new data points obtained from the DTW matrix is fixed. Therefore,
the DTW-SVM is capable of classifying data objects with variable length input
series [88].

Although, the DTW-SVM can model trajectory data with different lengths,
it encounters another problem. In the training phase of the DTW-SVM tech-
nique the input space of the SVMs classifier was represented using the the
DTW distances between training trajectories. In the testing phase we still
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need to apply the same representation on each data sample in the test set.
Thus for each trajectory in the test set we need to calculate the DTW distance
between the testing trajectory and all trajectories in the training set. This
makes the testing phase very slow and renders the DTW-SVM an unsuitable
method for applications that need real-time classification results. To over-
come the shortcomings of this method, GDTW-P-SVMs are used to classify
trajectories.

6.5 Analysing Using DTW-P-SVMs

The GDTW-P-SVMs were presented as a new technique for sequential data
analysis where each data object is characterised by a vector of numerical values
that may have different lengths for different data objects. It employs Potential
Support Vector Machines (P-SVM) [79] and GDTW to waive the fixed-length
restriction of feature vectors in training and test data. The P-SVM optimisa-
tion problem was defined as Equation 6.3 and it can handle data and kernels
that are neither positive definite nor square.

minimise 1
2‖X

T
φω‖2 + C1T (ε+ + ε−)

subject to KT (XT
φω − y) + ε+ ≥ 0

KT (XT
φω − y)− ε− ≥ 0

0 ≤ ε+, ε− (6.3)

As a result, GDTW-P-SVMs do not suffer from the shortcomings of DTW-
SVM and benefit from the DTW advantage of being able to compare trajec-
tories with different lengths (Chapter 5).

6.6 Data Sets

6.6.1 Simulated Data Sets

The simulation software was run over the 2D plan of Wheeler Place in Newcas-
tle (Australia). It contains several attractors with different levels of attraction
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Table 6.1: Data sets details

Class Attractor Crowd Agent Behaviour #Samples
Existence Attraction See Stop Test Train

1 NO N/A NO NO 1500 465
2 YES NO YES NO 1500 482
3 YES NO YES YES 1500 492
4 YES YES YES YES 1500 504
5 YES YES YES NO 1500 497

such as the City of Newcastle Information Centre and Climate Meter, Juicy
Beans Restaurant and Internet Cafe, a big public art work, the Civic Theatre
and the Civic Theatre Restaurant (Figure 6.2). The entrances and exit points
are limited to a few points. Each agent chooses one of these points as the start
point and another one as the main destination (Figure 6.6)[93, 92].

In the scenario where an agent is close enough to an attractor, simultaneous
changes in both α and its derivative (dα/dt) signals can be observed (R4 in
Figure 6.5). Whenever an attractor is close by, the agent’s head rapidly corrects
its position so that its gaze vector is in the direction of the attractor. As a result
of this correction, a sudden change in α velocity (dα/dt) can also be observed.
If the category of the attractor is matched with the agent’s need vector then
the agent will move towards the attractor with the highest possible speed for
the agent (R2 in Figure 6.5). The highest speed is defined for each agent in the
agent’s speed category. When the agent reaches the attractor it will focus on
the attractor for a short period of time (R3 in Figure 6.5), before continuing
its normal behaviour (R1 in Figure 6.5). The majority of data collected in
the experiments with distractions showed distinct changes in dα/dt when the
agent’s head engaged a visually attractive object.

Table 6.1 describes a data set that is used to analyse simulated pedestrian
spatial behaviour. The data set is obtained using the simulator software with
different environmental and behavioural configurations. Five different classes
are defined according to the configurations. In the first class the simulated
pedestrians (agents) cannot see any attractor either because the attractors
are not close enough to the flow of agents or there is no attractor in the
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Figure 6.4: Spatial behavioural characteristics of an agent where there is no
attractor close by. The values for each curve are scaled between 0 and 1. The
agent’s positions are projected from 2D to 1D. The curves of the angle and
its derivative show a smooth behaviour with a small oscillation in these values
where there is no attractor around the agent.
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Figure 6.5: Spatial behavioural characteristics of an agent with the existence
of some attractors. Different behaviours are shown in different colours and are
labeled with R1, R2, R3, and R4. R1s show regions where the agent cannot
see any attractor and it shows casual behaviour. R2s show regions where the
agent is becoming attracted to an attractor. R3s show regions where the agent
is attracted to an attractor. R4s show regions where the agent is not becoming
attracted to an attractor but it pays visual attention to the attractor. Spikes
in curves of the angle and its derivative clearly distinguish them from other
curves in R4.
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Figure 6.6: Some examples of simulated trajectories mapped onto the real-
world image. Each trajectory is shown in a different colour. The colours are
chosen randomly.
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experimental space. In previous chapters this class of behaviours is referred
to as normal behaviours and the rest as attracted/abnormal behaviours. In
this section, however, the simulated behaviours are more precisely categorised
into four additional classes as well as the normal behaviour. The new classes
not only describe agents’ behaviour in the presence or absence of attractive
objects, but they can also describe the impacts of crowd attraction on agents’
spatial behaviour. The classes show the impact of an agent’s need vector by
distinguishing between agents that can only see an attractor and those that get
attracted to an attractor and spend some time reading/visiting the attractor
(“stop” in Table 6.1).

The following settings for the simulation software were used to generate
the simulated agents:

• Maximum number of agents in the scene: 50

• Number of object categories: 5

• Number of agent’s need categories: 5

• Number of agent’s speed categories: 5

• Number of agent’s sight categories: 4

• Average agent’s speed distribution: Normal

• Environmental configurations: Scenario two (Figure 6.2) as described in
Chapter 2.

6.6.2 Real-World Data Sets

To collect real-world trajectory data sets, the pedestrian detection and tracking
system described in Chapter 3 is used. An optical camera is installed on a
fixed-platform at Wheeler Place to collect video data that contain pedestrians’
movements. The videos are captured during a seven week observation period
(every Thursday from 8am to 5pm). The camera is installed on the same place
with the same horizontal and vertical angels for all the experiments. During the
recording period 1200 pedestrians were detected. Among them 830 pedestrians
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Figure 6.7: Tracked pedestrians using the pedestrian detection and tracking
system. Each track is shown in a different colour. The colours are chosen
randomly.

were tracked at Wheeler Place and the rest were outside the area of interest.
either walking along Hunter Street (Figure 6.12) or not entering the main grid
of Wheeler Place. Figure 6.7 shows the collected trajectories.

6.7 Experimental Results

6.7.1 Simulated Data Classification

To analyse simulated pedestrian spatial behaviour, the data set described in
Table 6.1 is used. The data set is split into two data sets according to the crowd
attraction activation. The first data set contains class 1, class 2 and class 3,
for which crowd attraction is disabled, and the second data set contains class
1, class 4, and class 5 with enabled crowd attraction.

Table 6.2 and Table 6.3 show classification error rates for simulated be-
havioural characteristics. In both tables the classification error rates of three
trajectory analysis methods are compared. To perform the data classification
the LIBSVM toolbox is used and a one-vs-one strategy along with a classi-
fier is employed. A five-fold cross-validation optimisation technique with a
leave-one-out policy is utilised to tune the hyperparameters (C, γ and kernel
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Table 6.2: Classification error rates without the impact of crowd attraction.
Three classes of behaviour are used; class 1: the attractors are far away from
the agents’ flow dynamics, class 2: the agents only see the attractors, and class
3: the agents not only see but also get attracted to the attractors. Columns
labelled with ’see’ include class 1 and class 2, columns labelled with ’stop’
include class 1 and class 3, and columns labelled with ’total’ include class 1,
class 2 and class 3 of behaviour. GDTW-P-SVMs have the lowest classification
error rate when analysing the angle and its derivative, which are shown in bold.
Features DTW (1NN) GDTW-P-SVMs DTW-SVM

See Stop Total See Stop Total See Stop Total
Trajectory N/A 0.153 0.448 N/A 0.014 0.318 N/A 0.157 0.449
Speed N/A 0.138 0.442 N/A 0.030 0.333 N/A 0.083 0.400
Angle(α) 0.049 0.421 0.211 0.015 0.037 0.021 0.085 0.207 0.150
d(α)/d(t) 0.159 0.201 0.160 0.019 0.021 0.021 0.037 0.262 0.121

Table 6.3: Classification error rates with the impact of crowd attraction. Three
classes of behaviour are used; class 1: the attractors are far away from the
agents’ flow dynamics, class 4: the agents only see the attractors, and class
5: the agents not only see but also get attracted to the attractors. Columns
labelled with ’see’ include class 1 and class 4, columns labelled with ’stop’
include class 1 and class 5, and columns labelled with ’total’ include class 1,
class 4 and class 5 of behaviour. GDTW-P-SVMs have the lowest classification
error rate when analysing the angle and its derivative, which are shown in bold.
Features DTW (1NN) GDTW-P-SVMs DTW-SVM

See Stop Total See Stop Total See Stop Total
Trajectory N/A 0.292 0.501 N/A 0.031 0.341 N/A 0.114 0.408
Speed N/A 0.284 0.471 N/A 0.087 0.372 N/A 0.128 0.421
Angle(α) 0.085 0.195 0.142 0.015 0.093 0.082 0.043 0.297 0.167
d(α)/d(t) 0.159 0.191 0.174 0.019 0.042 0.031 0.000 0.290 0.167
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Figure 6.8: Classifier comparison without the impact of crowd attraction. Clas-
sifying the angle and its derivative results in lower classification error rates.
The GDTW-P-SVM classification technique has the highest accuracy among
other classification techniques when analysing spatial behavioural characteris-
tics.

parameters). The test sets and training sets are two completely separate sets
of data. The training sets are used for obtaining the models and tuning hyper-
parameters. The test sets are only used to obtain the classification error rates
reported in Table 6.3 and Table 6.2.

The classification error rates are shown for four behavioural characteristics,
which include: trajectory, speed, the angle between the movement direction
and gaze vector (α), and the derivative of α with respect to time (t). The error
rates are reported for different situations:

• See: Agents in this situation could only see an attractive object and
this does not attract their their interest. The error rates reported in
“See” columns are the ratio of the “number of these agents that classified
correctly” to “the total number of these agents plus those that showed
a normal behaviour”. In other words, the training set and testing sets
include only class 1 and class 2 data sets for Table 6.2 and class 1 and
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Figure 6.9: Classifier comparison with the impact of crowd attraction. Crowd
attraction implies noise on data and this results in higher error rates compared
to Figure 6.8. The GDTW-P-SVM classification technique still has the lowest
error rate among the comparing classifiers.

class 5 for Table 6.3, as described in Table 6.1.

• Stop: Agents in this situation were not only able to see an attractor but
also get attracted to the attractor and spend some time examining the
attractor. The error rates reported in “Stop” columns are the ratio of the
“number of these agents that classified correctly” to “the total number of
these agents and those that showed a normal behaviour”. In other words,
the training set and testing sets include only class 1 and class 3 data sets
for Table 6.2 and class 1 and class 4 for Table 6.3, as described in Table
6.1.

• Total : These columns report the total classification error rates for all
three classes of agents (“only see”, “get attracted by an attractor”, and
“the normal behaviour when there is no attractor close by”). The total
error rates are the ratio of the “number of agents that were classified
correctly” to “the total number of agents”. Here, the training set and
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testing sets include classes 1, 2 and 3 data sets for Table 6.2 and classes
1, 4 and 5 for Table 6.3, as described in Table 6.1.

In the simulation software it is assumed that if the object is not of in-
terest to an agent, the agent only sees the object without getting attracted
by it. Thus no significant change in the agent’s trajectory and speed will be
observed. In this case, analysing trajectory or speed data cannot reveal the
required information about the agent’s spatial behaviour. This behaviour is
shown by “N/A” in Table 6.3 and Table 6.2. On the other hand, crowd attrac-
tions require virtual attractive objects (defined in [92]) that themselves need
attracted agents. Since in class 1 we assumed that attractors are far away
from agent flow, crowd attraction cannot be happening and this situation is
also shown as “N/A” in Table 6.1.

While analysing the trajectory and speed data cannot reveal the desired
information about the agent’s spatial behaviour, the angle and its derivative
can distinguish between agents that saw an attractor and those with normal
spatial behaviour. This is shown in both Table 6.2 and Table 6.3. The total
columns in the tables contain classification error rates for all three classes (see,
stop and normal). In this column, all three classification techniques have lower
error rates for classifying the angle and its derivative. This is because in the
scenes with a high density of agents, a collision avoidance algorithm that was
used in the simulator alters agent’s trajectories. In cases where the scene is too
crowded the simulator also implies changes to agents’ speed. Consequently, the
obtained speed and location trajectories do not purely result from the influence
of attractors on the agent’s behaviour.

By enabling the crowd attraction in the simulator, agents not only follow
their needs but also get attracted by other agents who are forming a social
group. Although the frequency of social group occurrence is low, social groups
imply noise on the trajectory data. This explains why most of the error rates
in Table 6.3 are higher than those in Table 6.2.

Figure 6.8 and Figure 6.9 are two other representations of the total columns.
As shown, GDTW-P-SVMs have the lowest error rate among the classifiers.
Classifying the angle and its derivative have shown lower error rates compared
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to trajectory and speed of movement in all three classifiers. Including the
impact of crowd attraction in the simulation leads to higher error rates than
when omitting it.

6.7.2 Real-World Data Classification

The trajectories extracted from videos are used as the input space of the
GDTW-P-SVMs to learn pedestrians’ patterns of movements. To analyse
pedestrians’ reactions to the attractive objects the following two classes are
learnt by the classifier.

1. Casual/normal behaviour : Includes the trajectories of pedestrians who
have entered into and exited from Wheeler Place without being dis-
tracted.

2. Attracted behaviour :Includes the trajectories of pedestrians who have be-
come attracted by an attractive object and are distracted from their
casual direction of movement.

Figure 6.10 shows the trajectories with the casual/normal behaviour in black
and attracted trajectories in white. Table 6.4 shows the characteristics of the
training and testing data sets. The number of negative and positive samples in
the data set is not balanced. To cope with this problem the weight balancing
technique suggested by Vapnik is employed [181].

Figure 6.11 compares Receiver Operating Characteristic (ROC) curves for
GDTW-SVMs, DTW-SVMs and GDTW-P-SVMs using the real-world trajec-
tory data set. The False Positive Rate (FPR) is defined as the fraction of the
false negatives out of total negatives, and the True Positive Rate (TPR) is de-
fined as the fraction of the true positives out of total positives. The Area Under
the Curve (AUC) for GDTW-SVMs, DTW-SVMs, and GDTW-P-SVMs are
0.6401, 0.7780 and 0.8915 respectively (the closer the value of AUC to 1, the
higher the accuracy of classification). The ROC curves show that GTDW-P-
SVMs have higher accuracy in classifying positive and negative samples than
other methods.



6.7. Experimental Results 163

Figure 6.10: Tracked pedestrians using the pedestrian detection and tracking
system. White trajectories belong to pedestrians who have been attracted to
the Cafe or the Opening area. The start point of each trajectory is shown with
its number.

Figure 6.11: Receiver Operating Characteristic (ROC) curves for trajectory
classification of real-world data using GDTW-SVM, DTW-SVMs and GDTW-
P-SVMs. The Area Under the Curve (AUC) for GDTW-SVMs, DTW-SVMs,
and GDTW-P-SVMs are 0.6401, 0.7780 and 0.8915 respectively.
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6.7.3 Simulated vs. Real-World Trajectory Analysis

To compare the classification results using the real-world and simulated tra-
jectories, the simulation software is employed to generate new trajectory data
sets that are compatible with the real-world restrictions. The following config-
urations are altered in simulation to generate the new data sets:

• The tracking system cannot track pedestrians in the Cafe so trajectories
are extracted outside the cafe only. In the simulation the same restriction
is applied. When an agent gets attracted to an attractive object the
corresponding simulated trajectory will be finished.

• The Cafe and the opening area are the only attractive objects with ex-
tractable attracted trajectories. Trajectories that are attracted by other
attractive objects are not extractable because they are occluded with an
obstacle, for example, trees, benches and seating areas for the cafe.

• The trajectories generated by the simulation software are cropped to
match the field of view of the camera installed at Wheeler Place.

• Number of generated trajectories in each class of behaviour in the train-
ing and test sets are controlled by the object category and the agent need
vectors (described in [92]).

Figure 6.12 shows the the result of mapping the real-world trajectories to
the plan of Wheeler Place. In this figure, locations where pedestrians have
shown more interest to cross over are shown with a darker red colour. As
shown in this figure, there are two locations where pedestrians have shown
more interests to go. An opening area that leads to a car park, and the Cafe.
Figure 6.13 illustrates the simulated trajectories using the same representation
method. As shown in these two figures, while the generated trajectories are
smooth and do not contain noise, the extracted trajectories from real-world
video contain pedestrian detection and tracking noise. It will be shown that
the proposed method for behavioural analysis can handle noisy as well as non-
noisy data sets.



6.7. Experimental Results 165

Figure 6.12: Representation of mapping the real-world trajectories to the plan
of Wheeler Place. Locations where pedestrians have crossed more often are
shown with darker red colours. Dashed lines indicate the field of view of the
camera.
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Figure 6.13: Representation of the simulated trajectories at Wheeler Place.
Locations where simulated pedestrians have crossed more often are shown with
darker red colours.
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Table 6.4: The characteristics of training and testing data sets used in the
analysis of pedestrian behaviour at Wheeler Place.

Collection Dataset #Normal #Attracted Total

Real-World
Train 148 85 233
Test 391 206 597
Total 539 291 830

Simulation
Train 150 85 235
Test 380 215 595
Total 530 300 830

To perform data classification the LIBSVM [28] and the P-SVM [79] tool-
boxes are used for implementing the two-step DTW-SVM and the GDTW-P-
SVMs respectively. To ensure a fair comparison, the hyperparameter selection
procedure was equal in all methods. Best values are selected from a gener-
ated hyperparameter set to minimise the error rate in the training phase. For
classifying data the Radial Basis Function (RBF) kernel with Euclidean Dis-
tance (ED) is employed in SVMs and the Gaussian Dynamic Time Warping
(GDTW) function is used in GDTW-P-SVMs. The five-fold cross-validation
technique is employed to tune the classifier hyperparameters (C and γ). Two
separate data sets are used for training and testing. The tuning is performed
using the training set only. More details about the tuning are provided in
Chapter 5.

Figure 6.14 compares the accuracy of the classification of the trajecto-
ries using 1-nearest neighbour (1NN) DTW, GDTW-SVMs, DTW-SVMs and
GDTW-P-SVMs for simulated and real-world data sets described in Table 6.4.
The GDTW-P-SVMs classification technique shows higher accuracy than other
techniques. The classification accuracy is always higher when using simulated
trajectory data except for GDTW-SVMs. As discussed in [88], the positive
definiteness of the GDTW depends on the training data sets and therefore the
convergence of GDTW-SVMs to the optimal solution is not always guaran-
teed. In the experiments the GDTW-SVMs showed the lowest classification
accuracy.



6.7. Experimental Results 168

Figure 6.14: Classifier comparison using real-world and simulated trajectory
data sets. The classification of simulated data is always more accurate than the
real-world data except for GDTW-SVMs. The GDTW-P-SVMs classification
technique shows the highest accuracy.



6.8. Summary and Discussion 169

6.8 Summary and Discussion

A system to analyse pedestrians’ spatial behaviour in an architectural envi-
ronment was developed. The system utilised a new classifier that is capable
of handling input series with different lengths. The classifier was presented in
Chapter 5. Different spatial behaviours were described using simulated and
extracted characteristics. The simulated characteristics were generated using
the proposed method described in Chapter 2. Instead of segmenting each
trajectory data sample into several fixed-length segments prior to analysing
them, the method analysed the whole trajectory sequence as a single input.
Several behaviour patterns were learnt using the simulated and real-world data
sets. GDTW-P-SVMs, DTW-SVMs, DTW(1NN) and DTW-SVMs classifica-
tion techniques were employed to distinguish between the behaviour patterns.
Although DTW-SVMs were able to classify trajectory data with acceptable
error rates, they are not able to provide the classification results in real-time.
The shortcomings of using DTW-SVMs, discussed in Chapter 5, were also
highlighted using the behavioural data sets. It was argued that the classifica-
tion accuracy using the real-world data is lower than using the simulated data.
GDTW-P-SVMs classified the behavioural data sets with the highest accuracy
compared to the other algorithms and had the benefit of a fast testing phase.
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This chapter presents the main conclusions drawn from this work. Evi-
dence is provided for achievement of the aims, which were first introduced in
Chapter 1. Future work is proposed to address the limitations of this research.

7.1 Conclusions

This thesis has presented an analysis method for pedestrians’ spatial behaviour
in urban spaces. The method is capable of distinguishing between different be-
havioural classes based on characteristics extracted from simulated and real-
world pedestrians. Simulation software for modelling spatial behaviour, a new
classification method to handle input series with different lengths, and an anal-
ysis approach using the classification method were presented in this thesis.

7.1.1 Behavioural Features Collection

Simulation software for modelling pedestrian spatial behaviour in a 2D plan
of an urban space was presented in Chapter 2. The simulation is multi-agent-
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based, which adds two unique features to the conventional model: the gaze
vector and attractor objects. The benefits of this new approach become es-
pecially clear in cases of complex spatial arrangements where changing the
configuration of walking environments (and thus adapting designs) was possi-
ble. A software system was developed to read plans, extract boundaries and
obstacles, and generate urban and pedestrian models. The simulation was
then run using the models, and the analysis of the behavioural characteristics
of simulated agents was performed.

To model advanced spatial features of the pedestrians and their environ-
ments, the dependency of attention and visual gaze direction was discussed.
An innovative model is proposed to simulate goal-driven attention and stimuli-
driven attention with the “agent’s need vector” (ANV) and the “object level of
attraction”. The proposed model includes group formation and the effects of
group size on directing a pedestrian’s attention. The simulation was run for a
real-world space, Wheeler Place in Newcastle. Different scenarios with different
configurations, and the impacts of considering crowd attraction on pedestrian
behaviour, were presented and discussed in Chapter 2. The experimental re-
sults demonstrated that the new system could provide significant support for
understanding how changes in the configuration of the physical/visual built
environment are reflected by measurable changes in agents’ behaviour.

To obtain behavioural characteristics from real-world video data, a pedes-
trian detection and tracking system was presented in Chapter 3. The system
employed an optical camera installed on a fixed platform to extract trajectory
data at Wheeler Place. The system consisted of three parts: i) background de-
tection ii) pedestrian detection and iii) pedestrian tracking. In the background
detection we employed a background subtraction method with an upgrading
strategy. For recognising pedestrians, depth and shape features were extracted
and used for training classifiers. For tracking the detected pedestrians, pixel,
depth, and motion features were used to find the same pedestrian in a stack
of frames. The presented approach showed the capability of GDTW-P-SVMs
in classifying extracted features for pedestrian detection. The simulated and
extracted behavioural characteristics have been used in the proposed analysis
system.
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7.1.2 Behaviour Analysis

The simulated behavioural data and the real-world extracted trajectories are
used to classify agent/pedestrian behaviour. To classify trajectories a kernel-
based classification technique was proposed and used. Support Vector Ma-
chines are a kernel-based classification technique that is capable of calculating
the optimal separating hyperplane in the feature space. The original SVM was
a linear classifier. However, Vapnik suggested the use of the kernel trick. If the
kernel used is a radial basis function (RBF), the corresponding feature space
is a Hilbert space of infinite dimension. To use the SVM as the classifier the
kernel employed to map the input space to feature space should be positive
semi-definite (PSD). The standard SVMs with a PSD kernel can only classify
feature vectors with fixed-length.

The behavioural features generated and extracted using the simulation
and tracking systems may have different lengths. Therefore the standard
SVMs with a PSD kernel defined in Hilbert Space cannot be used with the
behavioural features. To solve this problem a new classification technique,
GDTW-P-SVMs, was introduced for sequential data analysis where each data
object is characterised by a series of numerical values that may have different
lengths for different data objects. The new technique is a maximum mar-
gin method for the construction of classifiers with variable-length input series.
The well-known DTW algorithm was utilised to provide an elastic distance
measure that is able to compare variable-length input series. GDTW-P-SVMs
were compared with the two-step DTW-SVM method, where training data
were required in the testing phase as well as in the trained models. Although
DTW-SVMs were able to classify trajectory data with acceptable error rates,
they are not able to provide the classification results in real-time as the testing
phase for this technique is too slow for problems that have a big training set.

GDTW-P-SVMs were proposed to overcome the shortcomings of the SVMs
(with RBF kernel) and DTW-SVM by altering the kernel function in P-SVMs
using DTW. As a result, GDTW-P-SVMs could handle data and kernel ma-
trices that were neither positive definite nor square, and it could also be
applied to data with variable-length input series. A comparison of the per-
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formance of GDTW-P-SVMs and several other classification techniques was
performed with several real-world data sets from the UCR Time Series Clas-
sification/Clustering page, the GeoLife trajectory data set, and the character
trajectory from the UCI repository. The data sets included data with both vari-
able and fixed-length input series. Classification error rates and ROC curves
showed that GDTW-P-SVMs can converge into the optimal separating hy-
perplane with maximum margin in classification problems with fixed-length
feature vectors. A statistical evaluation was provided in Chapter 5 showing
that GDTW-P-SVMs improved the classification accuracy significantly.

Chapter 5 discussed the reasons why DTW cannot be used as a kernel
distance measure in standard SVMs. In the case of variable-length data in-
puts, GDTW-P-SVMs significantly outperformed other existing methods by
two main advantages, it has significantly lower classification error rates and
works directly with the variable-length input series. The second advantage
becomes more important when the extraction of fixed-length feature vectors
is not feasible or when using fixed-length segments of data objects fails to
describe the relationship between data objects properly.

A pilot system to analyse pedestrians’ spatial behaviour in an architectural
environment was developed. The system utilised a new classifier that is capable
of handling input series with different lengths. The classifier was presented
in Chapter 5. Different spatial behaviours were described using simulated
and extracted characteristics. The simulated characteristics were generated
using the proposed method described in Chapter 2. GDTW-P-SVMs, DTW-
SVMs, DTW(1NN) and DTW-SVMs classification techniques were employed
to distinguish between the behaviour patterns. Although DTW-SVMs were
able to classify trajectory data with acceptable error rates, they are not able to
provide the classification results in real-time. The shortcomings of using DTW-
SVMs, discussed in Chapter 5, were also highlighted using the behavioural data
sets. It was argued that the classification accuracy using the real-world data
is lower than using the simulated data.

The proposed classification technique was used in a behaviour analysis
system. The system was developed to analyse pedestrian spatial behaviour
in an architectural environment. The system employed the GDTW-P-SVMs
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classifier that is capable of accepting data objects with different length input
series, such as trajectory-based sequential data sets. Instead of segmenting each
trajectory data sample into several fixed-length segments prior to analysing
them, the method analysed the whole trajectory sequence as a single input.
Several behaviour patterns were learnt using the simulated and real-world data
sets. It was argued in Chapter 6 that the classification accuracy using the real-
world data is lower than using the simulated data. GDTW-P-SVMs classified
the behavioural data sets with the highest accuracy compared to the other
algorithms and had the benefit of a fast testing phase.

7.2 Main Research Contributions

The main contributions of this research are made towards achieving the aims
described in Chapter 1. The following lists the main contribution regarding
each of the aims:

1. Behaviour simulation: The main purpose of this aim was to introduce a
simulation system that can be used for evaluating an urban design based
on pedestrians’ reactions to their immediate surroundings. To this end,
a new simulation system is proposed that includes a multi-agent-based
simulation procedure, an urban model and a pedestrian spatial behaviour
model. The models introduce the simulation of several new physical at-
tributes of visually attractive objects in an urban space. These include
Virtual Attractive Objects, dynamic level of attraction, crowd attraction,
group formation based on visual desires, and goal-driven and stimulus-
driven attentions. The experimental results using the simulation soft-
ware system demonstrated that the new system can provide significant
support for understanding how changes in the configuration of the physi-
cal/visual built environment are reflected by measurable changes in agent
behaviour.

Therefore, the main contribution of the simulation software presented
in Chapter 2 is introducing a multi-agent-based spatial behaviour simu-
lation software that provides a unique support to architects for assess-
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ing the impacts of planned urban spaces on pedestrian behaviour. Fur-
thermore, the simulation software extends the literature by introducing
new urban and pedestrian models that can generate complex behavioural
characteristics to fulfill the requirements of assessing an architectural de-
sign. The contributions of the simulation software have been published
in [90, 91, 92, 93].

2. Variable-length time series classification: The main purpose of this aim
was to develop a classification technique for time series with different
length feature series. To achieve this the existing algorithms, which use
Support Vector Machines (SVMs) and different distance measures, were
examined. In particular, the usage of Dynamic Time Warping (DTW)
as a distance measure in Radial Basis Kernels (also known as Gaussian
kernels) was examined. The kernel with DTW is called Gaussian Dy-
namic Time Warping (GDTW). DTW was used as it can measure the
similarities between two input series with different lengths. The use of
GDTW in standard SVMs and its positive definiteness was discussed.
It was shown that the GDTW in SVMs may result in a non-PSD ker-
nel and therefore the existence of a Reproducing Kernel Hilbert Space
is not guaranteed. To cope with this challenge a new method that uses
GDTW in an existing classification technique called Potential Support
Vector Machines (P-SVMs), which can handle non-positive kernel ma-
trices was proposed. The proposed method is called GDTW-P-SVMs
and was compared to several benchmarked data sets with fixed-length
and variable-length data objects. In Chapter 5 it was shown that the
proposed coupling method significantly improved the classification accu-
racies using the data sets.

Therefore, the major contribution regarding the time-series classification
presented in Chapter 5 was introducing GDTW-P-SVMs as a new cou-
pling technique that is capable of classifying variable-length and fixed-
length data objects with a significantly improved accuracy. The train-
ability of GDTW-P-SVMs and their performance compared to existing
methods has been presented in [88, 94].
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3. Analysis of spatial behaviour in urban spaces: The aim was to develop a
system that automatically analyses behavioural characteristics in urban
spaces. To achieve this the GDTW-P-SVMs were employed on spatial
behaviour data generated and extracted using the simulation and track-
ing software systems. The classification technique learns pedestrians’
spatial behaviour patterns in a simulated and real-world urban space.
Chapter 6 showed that GDTW-P-SVMs can provide the highest classifi-
cation accuracy using the data sets when compared with other existing
methods. As a result of using GDTW-P-SVMs, the system waived the
need for using any segmentation method that was required to generate
fixed-length feature vectors.

The main contribution toward this aim was the introduction of a spa-
tial behaviour analysis system that learns patterns of behaviour using
the whole sequence of data series as a single input to increase the clas-
sification accuracy. The spatial behaviour analysis for simulated and
real-world data sets has formed the basis of the following publications:
[94, 89].

Overall, the novel contributions of this thesis are a pedestrian spatial be-
haviour simulation software with the application of architectural design eval-
uation, a classification technique that has an improved classification accuracy,
and an analysis system that learns patterns of pedestrians’ spatial behaviour
using the classification technique in a simulated and real-world urban space.

7.3 Future Works

7.3.1 Simulation and Feature Extraction

To understand the generalisability of the simulation software to model spa-
tial behaviour in urban spaces other than Wheeler Place, it could be applied
to range of urban spaces. Furthermore it could also be applied to other ar-
chitectural spaces including shopping malls, exhibitions, indoor and outdoor
areas. The research should give consideration to the quality of the approach
through assessment against the criteria used in this thesis. Taking future work
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in this direction would extend the analysis of the approach’s performance to
these different spaces, thus augmenting the guidance available to architects
and designers who need to find the impacts of attractors on human spatial
behaviour.

In the simulation it is assumed that the physical characteristics of an en-
vironmental setting influence our attitudes and actions more than biological
or cultural traits. Including the cultural impacts on human behaviour can
improve the simulation results. This includes finding ways to measure socio-
cultural variables and analysing the impacts of the spatial environment on
these variables. By comparing the resulting models and the proposed model,
the impact of socio-cultural variables on spatial behaviour can be simulated.

Another opportunity to enhance the urban and pedestrian models may be
to investigate the characteristics of attractive objects and their conspicuity
area. The research could include an investigation of different classes of at-
tractive objects based on the needs of pedestrians. The classes can be defined
using a set of features that describe the needs. This will provide more accurate
information on the agents’ reactions to attractive objects.

7.3.2 Analysis Approach and GDTW-P-SVMs

A future step to compare the GDTW-P-SVMs is to adopt other elastic dis-
tance measures in the Radial Basis Function (RBF) and employ the new ker-
nel in potential support vector machines. The distance measures may include
Longest Common Sub-Sequence (LCSS) and Edit Distance with Real-Penalty.
Furthermore, the research could contain an experimental justification for train-
ability of the proposed classifiers, which include testing the new classifiers using
benchmarked variable and fixed length data sets.

Future work may include applying the proposed classification method for
other possible classification problems that deal with data objects of different
lengths than the trajectory analysis. This may result in simplifying feature
extraction in pattern recognition in digital images. The research should inves-
tigate the classification accuracy of the proposed approach by adopting it in
different pattern recognition tasks in digital images.
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A future work may include further investigation in the analysis system by
adopting the system in different urban spaces with a wider variety of attractive
objects such as shops, open areas, and architectural and historical buildings.
Furthermore, the investigation may include adopting the analysis system in
indoor as well as outdoor spaces such as museums, shopping malls and exhibi-
tions. Potential applications of the analysis system may include the analysis
of pedestrians’ behaviour as a group of people for managing crowds, predicting
human behaviour in emergency situations, analysis of customers’ reactions to
a particular object in a shop.
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